Ordinary abelian varieties over a finite field

Pierre Deligne

1969

Translator's note

This page is a translation into English of the following:

Deligne, P. "Variétés abéliennes ordinaires sur un corps fini." *Inventiones Math.* 8 (1969), 238–243. publications.ias.edu/node/352

The translator (*Tim Hosgood*) takes full responsibility for any errors introduced, and claims no rights to any of the mathematical content herein.

Version: 94f6dce

p. 238

We give here a down-to-earth description of the category of ordinary abelian varieties over a finite field \mathbb{F}_q . The result that we obtain was inspired by Ihara [2, ch. V] (see also [3]).

1

Let *p* be a prime number, \mathbb{F}_p the field $\mathbb{Z}/(p)$, and $\overline{\mathbb{F}}_p$ an algebraic closure of \mathbb{F}_p . For every power *q* of *p*, let \mathbb{F}_q be the subfield of *q* elements of $\overline{\mathbb{F}}_p$. For every algebraic extension *k* of \mathbb{F}_p , we denote by $W_0(k)$ the discrete valuation Henselian ring essentially of finite type over \mathbb{Z} , absolutely unramified, with residue field *k*; let W(k) be the ring of Witt vectors over *k*, i.e. the completion of $W_0(k)$. Let $W = W(\overline{\mathbb{F}}_p)$, and let φ be an embedding of *W* into the field \mathbb{C} of complex numbers. We denote by $\mathbb{Z}(1)$ the subgroup $2\pi i \mathbb{Z}$ of \mathbb{C} . The exponential map defines an isomorphism between $\mathbb{Z}(1) \otimes \mathbb{Z}_\ell$ and $\mathbb{Z}_\ell(1)(\mathbb{C}) = \lim \mu_{\ell^n}(\mathbb{C})$.

We denote by A^* the dual abelian variety of an abelian variety A. For every field k, we denote by \overline{k} the algebraic closure of k.

2

Let A be an abelian variety of dimension g, defined over a field k of characteristic p. Recall that A is said to be *ordinary* if any of the following equivalent conditions are satisfied:

- i. A has p^g points of order dividing p with values in \overline{k} .
- ii. The "Hasse-Witte matrix" $F^*: H^1(A^{(p)}, \mathcal{O}_{A^{(p)}}) \to H^1(A, \mathcal{O}_A)$ is invertible.
- iii. The neutral component of the group scheme A_p that is the kernel of multiplication by p is of multiplicative type (and thus geometrically isomorphic to a power of μ_p).

If $k = \mathbb{F}_q$, and if *F* is the Frobenius endomorphism of *A*, and $Pc_A(F;x)$ is its characteristic polynomial, then these conditions are then equivalent to:

iv. At least half of the roots of $Pc_A(F;X)$ in $\overline{\mathbb{Q}}_p$ are *p*-adic units. In other words, if $n = \dim A$, then the reduction mod *p* of the polynomial $Pc_A(F;x)$ is not divisible by x^{n+1} .

3

Let A be an ordinary abelian variety over $\overline{\mathbb{F}}_p$. We denote by \widetilde{A} the canonical Serre–Tate covering [4] of A over W. Recall that \widetilde{A} depends functorially on A, and is characterised by the fact that the p-divisible group $T_p(\widetilde{A})$ over W attached to \widetilde{A} [5] is the product of the p-divisible groups (uniquely determined, by §2.iii) that cover, respectively, the neutral component and the largest étale quotient of $T_p(A)$. The canonical covering \widetilde{A} is again the unique covering of A such that every endomorphism of A lifts to \widetilde{A} . We denote by T(A) the integer homology of the complex abelian variety $A_{\mathbb{C}}$ induced by \widetilde{A} and φ by the extension of scalars of W to \mathbb{C} :

$$T(A) = H_1(\widetilde{A} \otimes_{\mathscr{O}} \mathbb{C}).$$

We know that \widetilde{A} descends uniquely to $W_0(\overline{F}_p)$, and so $A_{\mathbb{C}}$ depends only on A and on the restriction of φ to $W_0(\overline{F}_p)$. The free \mathbb{Z} -module T(A) is of rank $2\dim(A)$; it is functorial in A. Furthermore, if $\ell \neq p$ is a prime number, then we have, functorially, that

$$T(A) \otimes \mathbb{Z}_{\ell} = T_{\ell}(A). \tag{3.1}$$

p. 239

The canonical covering of the dual abelian variety A^* of A is the dual of \widetilde{A} , and so $(A_{\mathbb{C}})^* = A_{\mathbb{C}}^*$, and T(A) and $T(A^*)$ are in perfect duality with values in $\mathbb{Z}(1)$:

$$T(A) \otimes T(A^*) \to \mathbb{Z}(1) \tag{3.2}$$

(it is necessary to use $\mathbb{Z}(1)$ instead of \mathbb{Z} in order to obtain a theory that is invariant under complex conjugation). The pairings (3.2) are compatible, via (3.1), with the pairings

$$T_{\ell}(A) \otimes T_{\ell}(A^*) \to \mathbb{Z}_{\ell}(1);$$

a morphism $\xi: A \to A^*$ defines a polarisation of A if and only if $\xi_{\mathbb{C}}: A_{\mathbb{C}} \to A_{\mathbb{C}}^*$ defines a polarisation of $A_{\mathbb{C}}$. Set

$$T'_{p}(A) = \operatorname{Hom}(\mathbb{Q}_{p}/\mathbb{Z}_{p}, A(F_{p}))$$
$$T''_{p}(A) = \operatorname{Hom}_{\mathbb{Z}_{p}}(T'_{p}(A^{*}), \mathbb{Z}(1) \otimes \mathbb{Z}_{p})$$

These \mathbb{Z}_p -modules are covariant functors in A.

By definition of the canonical covering, the *p*-divisible group $T_p(\tilde{A})$ is the sum of the constant proétale group $T'_p(A)$ and the Cartier dual of $T'_p(A^*)$. For every morphism $u: A \to B$, the induced morphism $u: T_p(\tilde{A}) \to T_p(\tilde{B})$ can be identified with the sum of $u|T'_p(A): T'_p(A) \to T'_p(B)$ and the Cartier transpose of $u^t|T'_p(B^*): T'_p(B^*) \to T'_p(A^*)$. Over \mathbb{C} , we canonically have that $\mathbb{Z}(1)/(p^n) \sim \mu_{p^n}$, whence an isomorphism of functors:

$$T_{(p)}(A) = T(A) \otimes \mathbb{Z}_p = T'_p(A) \oplus T''_p(A).$$

$$(3.3)$$

Recall that, if $\varphi: X \to Y$ is an isogeny between complex abelian varieties, then the exact homotopy sequence reduces to a short exact sequence:

$$0 \rightarrow H_1(X) \rightarrow H_1(Y) \rightarrow \operatorname{Ker}(\varphi) \rightarrow 0.$$

The abelian varieties that are quotients of X by a finite subgroup, and these finite subgroups of X, correspond bijectively with the sub-lattice of $H_1(X) \otimes \mathbb{Q}$ containing $H_1(X)$.

Let *A* be an ordinary abelian variety over \mathbb{F}_p . If *n* is an integer coprime to *p*, then the subschemes of finite groups of order *n* of *A*, of \widetilde{A} , and of $A_{\mathbb{C}}$, correspond bijectively, and also correspond to lattices *R* containing T(A) such that [R:T(A)] = n.

Set $V'_p = T'_p(A) \otimes \mathbb{Q}_p$ and $V''_p(A) = T''_p(A) \otimes \mathbb{Q}_p$. The subschemes of finite groups of order p^k of A are products of a étale subgroup and an infinitesimal subgroup. The étale subgroups of order p^k of A correspond to those of subgroups of order p^k of $A_{\mathbb{C}}$ such that the lattice R corresponding to T(A) is contained inside $T_{(p)}(A) + V'_p(A)$. By duality, the infinitesimal subgroups of A correspond to the lattices R containing T(A) that are p-isogenous to T(A), i.e. such that [R:T(A)] is a power of p and is contained in $T_{(p)}(A) + V''_p(A)$.

All told, the finite subgroups of A^p , or the abelian varieties that are quotients of A, correspond bijectively to the lattices R containing T(A) such that

$$R \otimes \mathbb{Z}_p = (R \otimes \mathbb{Z}_p \cap V'_p) + (R \otimes \mathbb{Z}_p \cap V''_p).$$

$$(4.1)$$

5

In particular, $A^{(p)}$, the quotient of A by the largest infinitesimal subgroup of A that is annihilated by p (for ordinary A), is defined by the lattice $T(A)^{(p)}$ containing T(A) that is p-isogenous to T(A), and such that

$$T(A)^{(p)} \otimes \mathbb{Z}_p = T'_p(A) + \frac{1}{p}T''_p(A).$$

6

Let A be an abelian variety over \mathbb{F}_q , and $F: x \mapsto x^q$ its Frobenius endomorphism. Recall that A is uniquely determined by the pair (\overline{A}, F) induced by (A, F) by extension of scalars from \mathbb{F}_q to $\overline{\mathbb{F}}_q$; the endomorphism F of \overline{A} factors as the relative Frobenius morphism $F_r^{(q)}: \overline{A} \to \overline{A}^{(q)}$ followed by an isomorphism $F': \overline{A}^{(q)} \to \overline{A}$. If A is ordinary, then we denote by T(A) the \mathbb{Z} -module $T(\overline{A})$ endowed with the endomorphism F induced by the Frobenius endomorphism of A. By §5, the above, and (3.3), the lattices T(A) and F(T(A))are p-isogenous, and we have that

$$F(T'_{p}(A)) = T'_{p}(A),$$
 (6.1)

$$F(T_p''(A)) = q T_p''(A).$$
(6.2)

Theorem.

7

The functor $A \mapsto (T(A), F)$ is an equivalence of categories between the category of ordinary abelian varieties over \mathbb{F}_q and the category of free \mathbb{Z} -modules T of finite type endowed with an endomorphism F that satisfy the following conditions:

p. 241

- a. F is semi-simple, and its eigenvalues have complex absolute value $q^{\frac{1}{2}}$,
- b. at least half of the roots in \mathbb{Q}_p of the characteristic polynomial of F are p-adic units; in other words, if T is of rank d, then the reduction mod p of the polynomial $\operatorname{Pc}_T(F;x)$ is not divisible by $x^{\lfloor d/2 \rfloor+1}$,
- c. there exists an endomorphism V of T such that FV = q.

If condition (a) is satisfied, then conditions (b) and (c) are equivalent to the following:

d. the module $T \otimes \mathbb{Z}_p$ admits a decomposition, stable under F, into two sub- \mathbb{Z}_p -modules T'_p and T''_p of equal dimension, and such that $F|T'_p$ is invertible, and $F|T''_p$ is divisible by q.

Proof. A. We first prove that (a)+(b)+(c) \Longrightarrow (d). If α is a complex eigenvalue of F, then $\overline{\alpha}$ is another, of the same multiplicity, and $\alpha \overline{\alpha} = q$. If we exclude those that are equal to $\pm q^{\frac{1}{2}}$, then the eigenvalues of F in \mathbb{C} , and thus in $\overline{\mathbb{Q}}_p$, can be grouped into pairs of roots α and q/α . The roots α and q/α can not simultaneously be p-adic units, and so it follows from (b) that $\pm q^{\frac{1}{2}}$ is not an eigenvalue of F, that half of the eigenvalues of F in $\overline{\mathbb{Q}}_p$ are p-adic units, say $\alpha_1, \ldots, \alpha_{d/2}$, and that the other half are of the form $\beta_1 = q/\alpha_1, \ldots, \beta_{d/2} = q/\alpha_{d/2}$. Let $T_{(p)} = T \otimes \mathbb{Z}_p$, $V_p = T \otimes \mathbb{Q}_p$, V'_p the subspace of V_p given by the kernel of $\prod_i (F - \alpha_i)$, and V''_p the kernel of the endomorphism $\varphi = \prod_i (F - \beta_i)$. We have that $V_p = V'_p \oplus V''_p$. Let T'_p be the projection from $T_{(p)}$ to V'_p , and let $T''_p = T_{(p)} \cap V''_p$. Since φ annihilates V''_p , and respects T, it sends T'_p to $T_{(p)} \cap V'_p \subset T'_p$. Also, det $(\varphi|V'_p) = \prod_{i,j} (\alpha_i - \beta_j)$ is a p-adic unit, and so $\varphi(T'_p) = T'_p$, and $T_{(p)} \cap V'_p = T'_p$ and so $T_{(p)} = T'_p \oplus T''_p$.

B. Full faithfulness. Let A and B be abelian varieties over \mathbb{F}_q , and let ψ be the arrow

 ψ : Hom(A, B) \rightarrow Hom_{*F*}(T(A), T(B)).

By the theorem of Tate [7] and by (3.1), the arrow

 $\psi_{\ell} : \operatorname{Hom}(A,B) \otimes \mathbb{Z}_{\ell} \to \operatorname{Hom}_{F}(T(A),T(B)) \otimes \mathbb{Z}_{\ell}$

is an isomorphism for $(\ell, p) = 1$, and so $\psi \otimes \mathbb{Q}$ is an isomorphism. We know that $\operatorname{Hom}(A, B)$ is torsion free, and so ψ is injective. Let $u: A \to B$ be a morphism such that T(u) is divisible by n. The induced morphism $u_{\mathbb{C}}: \overline{A}_{\mathbb{C}} \to \overline{B}_{\mathbb{C}}$ is thus divisible by n, and thus so too is $\tilde{u}: \overline{\widetilde{A}} \to \overline{\widetilde{B}}$ at the generic point of W. The kernel of multiplication by n is flat over W; \tilde{u} thus disappears on this kernel, \tilde{u} and u are divisible by n, and ψ is bijective.

C. *Necessity.* The fact that (T(A), F) satisfies (a) follows from Weil; condition (d), which implies (b) and (c), follows from §6.

p. 242

D. *Isogenies.* Let (T_0, F) satisfy (a) and (d), and let T be a lattice in $T_0 \otimes \mathbb{Q}$, stable under F, that also satisfies (d). Suppose that (T_0, F) is the image of an abelian variety A over \mathbb{F}_q ;

we will prove that (T,F) comes from an isogenous abelian variety. By T with $\frac{1}{k}T$, which is isomorphic to T, we can suppose that $T \supset T_0$. Condition (d) implies that T satisfies (4.1), and that T defines a subgroup H of \overline{A} , defined over \mathbb{F}_q , and such that (T,F) = T(A/H).

E. Surjectivity. The functor T induces a functor $T_{\mathbb{Q}}$ from the category of isogeny classes of ordinary abelian varieties over \mathbb{F}_q to the category of finite-dimensional \mathbb{Q} -vector spaces endowed with an automorphism F that satisfies (a) and (b). By (D), it suffices to prove that this functor $T_{\mathbb{Q}}$ is essentially surjective. It even suffices to show that every simple object (V, F) in the codomain is in the image. By Honda [1] (see also [6]), there exists an abelian variety A over \mathbb{F}_q such that the characteristic polynomial of the Frobenius F_A of A is a power of that of F. The third characterisation in §2 of ordinary abelian varieties shows that A is ordinary. Furthermore, $(T(A) \otimes \mathbb{Q}, F)$ is the sum of copies of (V, F), and thus, by (B), the isogeny class of the abelian variety $A \otimes \mathbb{Q}$ is the sum of copies of an abelian variety B that satisfies $T(B) \otimes \mathbb{Q} = (V, F)$.

8

Let (T,F) be a pair satisfying the hypotheses of the theorem, 2g the rank of T, A the corresponding abelian variety over \mathbb{F}_q , and $A_{\mathbb{C}}$ the induced complex abelian variety (§3). We have that

 $T = H_1(A_{\mathbb{C}}),$

and so $T \otimes \mathbb{R}$ can be identified with the Lie algebra of $A_{\mathbb{C}}$, and is thus endowed with a complex structure. Here, thanks to J.-P. Serre, is how to reconstruct this complex structure in terms of T, F, and the restriction of φ to $W_0(\mathbb{F}_p)$:

Proposition.

The complex structure on $T \otimes \mathbb{R}$ defined above is characterised by the following properties:

- *i.* The endomorphism F is \mathbb{C} -linear.
- ii. If v is the valuation of the algebraic closure $\overline{\mathbb{Q}}$ of \mathbb{Q} in \mathbb{C} that extends the valuation of $W_0(\mathbb{F}_p)$, then the valuations of the g eigenvalues of this endomorphism are strictly positive.

Proof. Condition (i) is evident, and condition (ii) follows from the fact that the action of F on the Lie algebra of A is congruent to zero $\mod p$. The uniqueness of a structure satisfying (i) and (ii) follows easily from condition (b), satisfied by (T,F).

Bibliography

- T. Honda. "Isogeny classes of abelian varieties over finite fields." J. Math. Soc. Jap. 20 (1968), 83–95.
- [2] Y. Ihara. On congruence monodromy problems. University of Tokyo, 1968. 1.
- [3] Y. Ihara. "The congruence monodromy problems." J. Math. Soc. Jap. 20 (1968), 107–121.

- [4] J. Lubin, J.-P. Serre, J. Tate. *Elliptic curves and formal groups*. Woods Hole Summer Institute, 1964.
- [5] J.-P. Serre. "Groups *p*-divisibles (d'après J. Tate)." Séminaire Bourbaki. 10 (1966-67).
- [6] J. Tate. "Classes d'isogénies de variétés abéliennes sur un corps fini (d'après T. Honda)." Séminaire Bourbaki. 11 (1968-69).
- [7] J. Tate. "Endomorphisms of abelian varieties over finite fields." Inventiones Math. 2 (1966), 134–144.