Ordinary abelian varieties over a finite field

Pierre Deligne

1969

Translator's note
This page is a translation into English of the following:

Deligne, P. "Variétés abéliennes ordinaires sur un corps fini." Inventiones Math. 8 (1969), 238-243. publications.ias.edu/node/352

The translator (Tim Hosgood) takes full responsibility for any errors introduced, and claims no rights to any of the mathematical content herein.

Version: 94f6dce

We give here a down-to-earth description of the category of ordinary abelian varieties over a finite field \mathbb{F}_{q}. The result that we obtain was inspired by Ihara [2, ch. V] (see also [3]).

1

Let p be a prime number, \mathbb{F}_{p} the field $\mathbb{Z} /(p)$, and $\overline{\mathbb{F}}_{p}$ an algebraic closure of \mathbb{F}_{p}. For every power q of p, let \mathbb{F}_{q} be the subfield of q elements of $\overline{\mathbb{F}}_{p}$. For every algebraic extension k of \mathbb{F}_{p}, we denote by $W_{0}(k)$ the discrete valuation Henselian ring essentially of finite type over \mathbb{Z}, absolutely unramified, with residue field k; let $W(k)$ be the ring of Witt vectors over k, i.e. the completion of $W_{0}(k)$. Let $W=W\left(\bar{F}_{p}\right)$, and let φ be an embedding of W into the field \mathbb{C} of complex numbers. We denote by $\mathbb{Z}(1)$ the subgroup $2 \pi i \mathbb{Z}$ of \mathbb{C}. The exponential map defines an isomorphism between $\mathbb{Z}(1) \otimes \mathbb{Z}_{\ell}$ and $\mathbb{Z}_{\ell}(1)(\mathbb{C})=\lim _{\leftrightarrows} \mu_{\ell^{n}}(\mathbb{C})$.

We denote by A^{*} the dual abelian variety of an abelian variety A. For every field k, we denote by \bar{k} the algebraic closure of k.

2

Let A be an abelian variety of dimension g, defined over a field k of characteristic p. Recall that A is said to be ordinary if any of the following equivalent conditions are satisfied:
i. A has p^{g} points of order dividing p with values in \bar{k}.
ii. The "Hasse-Witte matrix" $F^{*}: H^{1}\left(A^{(p)}, \mathscr{O}_{A^{(p)}}\right) \rightarrow H^{1}\left(A, \mathscr{O}_{A}\right)$ is invertible.
iii. The neutral component of the group scheme A_{p} that is the kernel of multiplication by p is of multiplicative type (and thus geometrically isomorphic to a power of μ_{p}).

If $k=\mathbb{F}_{q}$, and if F is the Frobenius endomorphism of A, and $\operatorname{Pc}_{A}(F ; x)$ is its characteristic polynomial, then these conditions are then equivalent to:
iv. At least half of the roots of $\operatorname{Pc}_{A}(F ; X)$ in $\overline{\mathbb{Q}}_{p}$ are p-adic units. In other words, if $n=\operatorname{dim} A$, then the reduction $\bmod p$ of the polynomial $\mathrm{Pc}_{A}(F ; x)$ is not divisible by x^{n+1}.

3

Let A be an ordinary abelian variety over $\overline{\mathbb{F}}_{p}$. We denote by \widetilde{A} the canonical Serre-Tate covering [4] of A over W. Recall that \widetilde{A} depends functorially on A, and is characterised by the fact that the p-divisible group $T_{p}(\widetilde{A})$ over W attached to \widetilde{A} [5] is the product of the p-divisible groups (uniquely determined, by §2.iii) that cover, respectively, the neutral component and the largest étale quotient of $T_{p}(A)$. The canonical covering \widetilde{A} is again the unique covering of A such that every endomorphism of A lifts to \widetilde{A}. We denote by $T(A)$ the integer homology of the complex abelian variety $A_{\mathbb{C}}$ induced by \widetilde{A} and φ by the extension of scalars of W to \mathbb{C} :

$$
T(A)=H_{1}\left(\widetilde{A} \otimes_{\varphi} \mathbb{C}\right)
$$

We know that \widetilde{A} descends uniquely to $W_{0}\left(\bar{F}_{p}\right)$, and so $A_{\mathbb{C}}$ depends only on A and on the restriction of φ to $W_{0}\left(\bar{F}_{p}\right)$. The free \mathbb{Z}-module $T(A)$ is of $\operatorname{rank} 2 \operatorname{dim}(A)$; it is functorial in A. Furthermore, if $\ell \neq p$ is a prime number, then we have, functorially, that

$$
\begin{equation*}
T(A) \otimes \mathbb{Z}_{\ell}=T_{\ell}(A) \tag{3.1}
\end{equation*}
$$

The canonical covering of the dual abelian variety A^{*} of A is the dual of \widetilde{A}, and so $\left(A_{\mathbb{C}}\right)^{*}=A_{\mathbb{C}}^{*}$, and $T(A)$ and $T\left(A^{*}\right)$ are in perfect duality with values in $\mathbb{Z}(1)$:

$$
\begin{equation*}
T(A) \otimes T\left(A^{*}\right) \rightarrow \mathbb{Z}(1) \tag{3.2}
\end{equation*}
$$

(it is necessary to use $\mathbb{Z}(1)$ instead of \mathbb{Z} in order to obtain a theory that is invariant under complex conjugation). The pairings (3.2) are compatible, via (3.1), with the pairings

$$
T_{\ell}(A) \otimes T_{\ell}\left(A^{*}\right) \rightarrow \mathbb{Z}_{\ell}(1)
$$

a morphism $\xi: A \rightarrow A^{*}$ defines a polarisation of A if and only if $\xi_{\mathbb{C}}: A_{\mathbb{C}} \rightarrow A_{\mathbb{C}}^{*}$ defines a polarisation of $A_{\mathbb{C}}$. Set

$$
\begin{aligned}
& T_{p}^{\prime}(A)=\operatorname{Hom}\left(\mathbb{Q}_{p} / \mathbb{Z}_{p}, A\left(\bar{F}_{p}\right)\right) \\
& T_{p}^{\prime \prime}(A)=\operatorname{Hom}_{\mathbb{Z}_{p}}\left(T_{p}^{\prime}\left(A^{*}\right), \mathbb{Z}(1) \otimes \mathbb{Z}_{p}\right)
\end{aligned}
$$

These \mathbb{Z}_{p}-modules are covariant functors in A.
By definition of the canonical covering, the p-divisible group $T_{p}(\widetilde{A})$ is the sum of the constant proétale group $T_{p}^{\prime}(A)$ and the Cartier dual of $T_{p}^{\prime}\left(A^{*}\right)$. For every morphism $u: A \rightarrow B$, the induced morphism $u: T_{p}(\widetilde{A}) \rightarrow T_{p}(\widetilde{B})$ can be identified with the sum of $u \mid T_{p}^{\prime}(A): T_{p}^{\prime}(A) \rightarrow T_{p}^{\prime}(B)$ and the Cartier transpose of $u^{t} \mid T_{p}^{\prime}\left(B^{*}\right): T_{p}^{\prime}\left(B^{*}\right) \rightarrow T_{p}^{\prime}\left(A^{*}\right)$. Over \mathbb{C}, we canonically have that $\mathbb{Z}(1) /\left(p^{n}\right) \sim \mu_{p^{n}}$, whence an isomorphism of functors:

$$
\begin{equation*}
T_{(p)}(A)=T(A) \otimes \mathbb{Z}_{p}=T_{p}^{\prime}(A) \oplus T_{p}^{\prime \prime}(A) \tag{3.3}
\end{equation*}
$$

4

Recall that, if $\varphi: X \rightarrow Y$ is an isogeny between complex abelian varieties, then the exact homotopy sequence reduces to a short exact sequence:

$$
0 \rightarrow H_{1}(X) \rightarrow H_{1}(Y) \rightarrow \operatorname{Ker}(\varphi) \rightarrow 0 .
$$

The abelian varieties that are quotients of X by a finite subgroup, and these finite sub- \mid p. 240 groups of X, correspond bijectively with the sub-lattice of $H_{1}(X) \otimes \mathbb{Q}$ containing $H_{1}(X)$.

Let A be an ordinary abelian variety over $\overline{\mathbb{F}}_{p}$. If n is an integer coprime to p, then the subschemes of finite groups of order n of A, of \widetilde{A}, and of $A_{\mathbb{C}}$, correspond bijectively, and also correspond to lattices R containing $T(A)$ such that $[R: T(A)]=n$.

Set $V_{p}^{\prime}=T_{p}^{\prime}(A) \otimes \mathbb{Q}_{p}$ and $V_{p}^{\prime \prime}(A)=T_{p}^{\prime \prime}(A) \otimes \mathbb{Q}_{p}$. The subschemes of finite groups of order p^{k} of A are products of a étale subgroup and an infinitesimal subgroup. The étale subgroups of order p^{k} of A correspond to those of subgroups of order p^{k} of $A_{\mathbb{C}}$ such that the lattice R corresponding to $T(A)$ is contained inside $T_{(p)}(A)+V_{p}^{\prime}(A)$. By duality, the infinitesimal subgroups of A correspond to the lattices R containing $T(A)$ that are p-isogenous to $T(A)$, i.e. such that $[R: T(A)]$ is a power of p and is contained in $T_{(p)}(A)+V_{p}^{\prime \prime}(A)$.

All told, the finite subgroups of A^{p}, or the abelian varieties that are quotients of A, correspond bijectively to the lattices R containing $T(A)$ such that

$$
\begin{equation*}
R \otimes \mathbb{Z}_{p}=\left(R \otimes \mathbb{Z}_{p} \cap V_{p}^{\prime}\right)+\left(R \otimes \mathbb{Z}_{p} \cap V_{p}^{\prime \prime}\right) \tag{4.1}
\end{equation*}
$$

5

In particular, $A^{(p)}$, the quotient of A by the largest infinitesimal subgroup of A that is annihilated by p (for ordinary A), is defined by the lattice $T(A)^{(p)}$ containing $T(A)$ that is p-isogenous to $T(A)$, and such that

$$
T(A)^{(p)} \otimes \mathbb{Z}_{p}=T_{p}^{\prime}(A)+\frac{1}{p} T_{p}^{\prime \prime}(A)
$$

6

Let A be an abelian variety over \mathbb{F}_{q}, and $F: x \mapsto x^{q}$ its Frobenius endomorphism. Recall that A is uniquely determined by the pair (\bar{A}, F) induced by (A, F) by extension of scalars from \mathbb{F}_{q} to $\overline{\mathbb{F}}_{q}$; the endomorphism F of \bar{A} factors as the relative Frobenius morphism $F_{\mathrm{r}}^{(q)}: \bar{A} \rightarrow \bar{A}^{(q)}$ followed by an isomorphism $F^{\prime}: \bar{A}^{(q)} \rightarrow \bar{A}$. If A is ordinary, then we denote by $T(A)$ the \mathbb{Z}-module $T(\bar{A})$ endowed with the endomorphism F induced by the Frobenius endomorphism of A. By $\S 5$, the above, and (3.3), the lattices $T(A)$ and $F(T(A))$ are p-isogenous, and we have that

$$
\begin{gather*}
F\left(T_{p}^{\prime}(A)\right)=T_{p}^{\prime}(A) \tag{6.1}\\
F\left(T_{p}^{\prime \prime}(A)\right)=q T_{p}^{\prime \prime}(A) \tag{6.2}
\end{gather*}
$$

7

Theorem.

The functor $A \mapsto(T(A), F)$ is an equivalence of categories between the category of ordinary abelian varieties over \mathbb{F}_{q} and the category of free \mathbb{Z}-modules T of finite type endowed with an endomorphism F that satisfy the following conditions:
a. F is semi-simple, and its eigenvalues have complex absolute value $q^{\frac{1}{2}}$,
b. at least half of the roots in $\overline{\mathbb{Q}}_{p}$ of the characteristic polynomial of F are p-adic units; in other words, if T is of rank d, then the reduction $\bmod p$ of the polynomial $\mathrm{Pc}_{T}(F ; x)$ is not divisible by $x^{[d / 2]+1}$,
c. there exists an endomorphism V of T such that $F V=q$.

If condition (a) is satisfied, then conditions (b) and (c) are equivalent to the following:
d. the module $T \otimes \mathbb{Z}_{p}$ admits a decomposition, stable under F, into two sub- \mathbb{Z}_{p}-modules T_{p}^{\prime} and $T_{p}^{\prime \prime}$ of equal dimension, and such that $F \mid T_{p}^{\prime}$ is invertible, and $F \mid T_{p}^{\prime \prime}$ is divisible by q.

Proof. A. We first prove that $(\mathrm{a})+(\mathrm{b})+(\mathrm{c}) \Longrightarrow(\mathrm{d})$. If α is a complex eigenvalue of F, then $\bar{\alpha}$ is another, of the same multiplicity, and $\alpha \bar{\alpha}=q$. If we exclude those that are equal to $\pm q^{\frac{1}{2}}$, then the eigenvalues of F in \mathbb{C}, and thus in $\overline{\mathbb{Q}}_{p}$, can be grouped into pairs of roots α and q / α. The roots α and q / α can not simultaneously be p-adic units, and so it follows from (b) that $\pm q^{\frac{1}{2}}$ is not an eigenvalue of F, that half of the eigenvalues of F in $\overline{\mathbb{Q}}_{p}$ are p-adic units, say $\alpha_{1}, \ldots, \alpha_{d / 2}$, and that the other half are of the form $\beta_{1}=q / \alpha_{1}, \ldots, \beta_{d / 2}=q / \alpha_{d / 2}$. Let $T_{(p)}=T \otimes \mathbb{Z}_{p}, V_{p}=T \otimes \mathbb{Q}_{p}, V_{p}^{\prime}$ the subspace of V_{p} given by the kernel of $\prod_{i}\left(F-\alpha_{i}\right)$, and $V_{p}^{\prime \prime}$ the kernel of the endomorphism $\varphi=\prod_{i}\left(F-\beta_{i}\right)$. We have that $V_{p}=V_{p}^{\prime} \oplus V_{p}^{\prime \prime}$. Let T_{p}^{\prime} be the projection from $T_{(p)}$ to V_{p}^{\prime}, and let $T_{p}^{\prime \prime}=T_{(p)} \cap V_{p}^{\prime \prime}$. Since φ annihilates $V_{p}^{\prime \prime}$, and respects T, it sends T_{p}^{\prime} to $T_{(p)} \cap V_{p}^{\prime} \subset T_{p}^{\prime}$. Also, $\operatorname{det}\left(\varphi \mid V_{p}^{\prime}\right)=\prod_{i, j}\left(\alpha_{i}-\beta_{j}\right)$ is a p-adic unit, and so $\varphi\left(T_{p}^{\prime}\right)=T_{p}^{\prime}$, and $T_{(p)} \cap V_{p}^{\prime}=T_{p}^{\prime}$, and so $T_{(p)}=T_{p}^{\prime} \oplus T_{p}^{\prime \prime}$.
B. Full faithfulness. Let A and B be abelian varieties over \mathbb{F}_{q}, and let ψ be the arrow

$$
\psi: \operatorname{Hom}(A, B) \rightarrow \operatorname{Hom}_{F}(T(A), T(B))
$$

By the theorem of Tate [7] and by (3.1), the arrow

$$
\psi_{\ell}: \operatorname{Hom}(A, B) \otimes \mathbb{Z}_{\ell} \rightarrow \operatorname{Hom}_{F}(T(A), T(B)) \otimes \mathbb{Z}_{\ell}
$$

is an isomorphism for $(\ell, p)=1$, and so $\psi \otimes \mathbb{Q}$ is an isomorphism. We know that $\operatorname{Hom}(A, B)$ is torsion free, and so ψ is injective. Let $u: A \rightarrow B$ be a morphism such that $T(u)$ is divisible by n. The induced morphism $u_{\mathbb{C}}: \bar{A}_{\mathbb{C}} \rightarrow \bar{B}_{\mathbb{C}}$ is thus divisible by n, and thus so too is $\widetilde{u}: \widetilde{\bar{A}} \rightarrow \widetilde{\bar{B}}$ at the generic point of W. The kernel of multiplication by n is flat over $W ; \widetilde{u}$ thus disappears on this kernel, \widetilde{u} and u are divisible by n, and ψ is bijective.
C. Necessity. The fact that ($T(A), F)$ satisfies (a) follows from Weil; condition (d), which implies (b) and (c), follows from §6.
D. Isogenies. Let ($\left.T_{0}, F\right)$ satisfy (a) and (d), and let T be a lattice in $T_{0} \otimes \mathbb{Q}$, stable under F, that also satisfies (d). Suppose that $\left(T_{0}, F\right)$ is the image of an abelian variety A over \mathbb{F}_{q};
we will prove that (T, F) comes from an isogenous abelian variety. By T with $\frac{1}{k} T$, which is isomorphic to T, we can suppose that $T \supset T_{0}$. Condition (d) implies that T satisfies (4.1), and that T defines a subgroup H of \bar{A}, defined over \mathbb{F}_{q}, and such that $(T, F)=T(A / H)$.
E. Surjectivity. The functor T induces a functor $T_{\mathbb{Q}}$ from the category of isogeny classes of ordinary abelian varieties over \mathbb{F}_{q} to the category of finite-dimensional \mathbb{Q}-vector spaces endowed with an automorphism F that satisfies (a) and (b). By (D), it suffices to prove that this functor $T_{\mathbb{Q}}$ is essentially surjective. It even suffices to show that every simple object (V, F) in the codomain is in the image. By Honda [1] (see also [6]), there exists an abelian variety A over \mathbb{F}_{q} such that the characteristic polynomial of the Frobenius F_{A} of A is a power of that of F. The third characterisation in $\S 2$ of ordinary abelian varieties shows that A is ordinary. Furthermore, $(T(A) \otimes \mathbb{Q}, F)$ is the sum of copies of (V, F), and thus, by (B), the isogeny class of the abelian variety $A \otimes \mathbb{Q}$ is the sum of copies of an abelian variety B that satisfies $T(B) \otimes \mathbb{Q}=(V, F)$.

8

Let (T, F) be a pair satisfying the hypotheses of the theorem, $2 g$ the rank of T, A the corresponding abelian variety over \mathbb{F}_{q}, and $A_{\mathbb{C}}$ the induced complex abelian variety (§3). We have that

$$
T=H_{1}\left(A_{\mathbb{C}}\right),
$$

and so $T \otimes \mathbb{R}$ can be identified with the Lie algebra of $A_{\mathbb{C}}$, and is thus endowed with a complex structure. Here, thanks to J.-P. Serre, is how to reconstruct this complex structure in terms of T, F, and the restriction of φ to $W_{0}\left(\mathbb{F}_{p}\right)$:

Proposition.

The complex structure on $T \otimes \mathbb{R}$ defined above is characterised by the following properties:
i. The endomorphism F is \mathbb{C}-linear.
ii. If v is the valuation of the algebraic closure $\overline{\mathbb{Q}}$ of \mathbb{Q} in \mathbb{C} that extends the valuation of $W_{0}\left(\mathbb{F}_{p}\right)$, then the valuations of the g eigenvalues of this endomorphism are strictly positive.

Proof. Condition (i) is evident, and condition (ii) follows from the fact that the action of F on the Lie algebra of A is congruent to zero $\bmod p$. The uniqueness of a structure satisfying (i) and (ii) follows easily from condition (b), satisfied by (T, F).

Bibliography

[1] T. Honda. "Isogeny classes of abelian varieties over finite fields." J. Math. Soc. Jap. 20 (1968), 83-95.
[2] Y. Ihara. On congruence monodromy problems. University of Tokyo, 1968. 1.
[3] Y. Ihara. "The congruence monodromy problems." J. Math. Soc. Jap. 20 (1968), 107-121.
[4] J. Lubin, J.-P. Serre, J. Tate. Elliptic curves and formal groups. Woods Hole Summer Institute, 1964.
[5] J.-P. Serre. "Groups p-divisibles (d’après J. Tate)." Séminaire Bourbaki. 10 (1966-67).
[6] J. Tate. "Classes d’isogénies de variétés abéliennes sur un corps fini (d’après T. Honda)." Séminaire Bourbaki. 11 (1968-69).
[7] J. Tate. "Endomorphisms of abelian varieties over finite fields." Inventiones Math. 2 (1966), 134-144.

