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We give here a down-to-earth description of the category of ordinary abelian varieties

over a finite field Fq. The result that we obtain was inspired by Ihara [2, ch. V] (see also
[3]).

1
Let p be a prime number, Fp the field Z/(p), and Fp an algebraic closure of Fp. For every
power q of p, let Fq be the subfield of q elements of Fp. For every algebraic extension k of
Fp, we denote by W0(k) the discrete valuation Henselian ring essentially of finite type over
Z, absolutely unramified, with residue field k; let W(k) be the ring of Witt vectors over k,
i.e. the completion of W0(k). Let W =W(F p), and let ϕ be an embedding of W into the field
C of complex numbers. We denote by Z(1) the subgroup 2πiZ of C. The exponential map
defines an isomorphism between Z(1)⊗Zℓ and Zℓ(1)(C)= lim←−−µℓn (C).

We denote by A∗ the dual abelian variety of an abelian variety A. For every field k,
we denote by k the algebraic closure of k.

2
Let A be an abelian variety of dimension g, defined over a field k of characteristic p. Recall
that A is said to be ordinary if any of the following equivalent conditions are satisfied:

i. A has pg points of order dividing p with values in k.
ii. The “Hasse-Witte matrix” F∗ : H1(A(p),OA(p) )→ H1(A,OA) is invertible.

iii. The neutral component of the group scheme Ap that is the kernel of multiplication
by p is of multiplicative type (and thus geometrically isomorphic to a power of µp).
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If k = Fq, and if F is the Frobenius endomorphism of A, and PcA(F; x) is its character-
istic polynomial, then these conditions are then equivalent to:

iv. At least half of the roots of PcA(F; X ) in Qp are p-adic units. In other words, if
n = dim A, then the reduction mod p of the polynomial PcA(F; x) is not divisible by
xn+1.

3
Let A be an ordinary abelian variety over Fp. We denote by Ã the canonical Serre–Tate
covering [4] of A over W . Recall that Ã depends functorially on A, and is characterised
by the fact that the p-divisible group Tp(Ã) over W attached to Ã [5] is the product of
the p-divisible groups (uniquely determined, by §2.iii) that cover, respectively, the neutral
component and the largest étale quotient of Tp(A). The canonical covering Ã is again the
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unique covering of A such that every endomorphism of A lifts to Ã. We denote by T(A) the
integer homology of the complex abelian variety AC induced by Ã and ϕ by the extension
of scalars of W to C:

T(A)= H1(Ã⊗ϕC).

We know that Ã descends uniquely to W0(F p), and so AC depends only on A and on the
restriction of ϕ to W0(F p). The free Z-module T(A) is of rank 2dim(A); it is functorial in
A. Furthermore, if ℓ ̸= p is a prime number, then we have, functorially, that

T(A)⊗Zℓ = Tℓ(A). (3.1)

The canonical covering of the dual abelian variety A∗ of A is the dual of Ã, and so
(AC)∗ = A∗

C
, and T(A) and T(A∗) are in perfect duality with values in Z(1):

T(A)⊗T(A∗)→Z(1) (3.2)

(it is necessary to use Z(1) instead of Z in order to obtain a theory that is invariant under
complex conjugation). The pairings (3.2) are compatible, via (3.1), with the pairings

Tℓ(A)⊗Tℓ(A∗)→Zℓ(1);

a morphism ξ : A → A∗ defines a polarisation of A if and only if ξC : AC → A∗
C

defines a
polarisation of AC. Set

T ′
p(A)=Hom(Qp/Zp, A(F p))

T ′′
p(A)=HomZp (T ′

p(A∗),Z(1)⊗Zp)

These Zp-modules are covariant functors in A.
By definition of the canonical covering, the p-divisible group Tp(Ã) is the sum of the

constant proétale group T ′
p(A) and the Cartier dual of T ′

p(A∗). For every morphism
u : A → B, the induced morphism u : Tp(Ã) → Tp(B̃) can be identified with the sum of
u|T ′

p(A) : T ′
p(A) → T ′

p(B) and the Cartier transpose of ut|T ′
p(B∗) : T ′

p(B∗) → T ′
p(A∗). Over

C, we canonically have that Z(1)/(pn)∼µpn , whence an isomorphism of functors:

T(p)(A)= T(A)⊗Zp = T ′
p(A)⊕T ′′

p(A). (3.3)
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4
Recall that, if ϕ : X → Y is an isogeny between complex abelian varieties, then the exact
homotopy sequence reduces to a short exact sequence:

0→ H1(X )→ H1(Y )→Ker(ϕ)→ 0.

The abelian varieties that are quotients of X by a finite subgroup, and these finite sub-
∣∣∣ p. 240

groups of X , correspond bijectively with the sub-lattice of H1(X )⊗Q containing H1(X ).
Let A be an ordinary abelian variety over Fp. If n is an integer coprime to p, then the

subschemes of finite groups of order n of A, of Ã, and of AC, correspond bijectively, and
also correspond to lattices R containing T(A) such that [R : T(A)]= n.

Set V ′
p = T ′

p(A)⊗Qp and V ′′
p (A)= T ′′

p(A)⊗Qp. The subschemes of finite groups of order
pk of A are products of a étale subgroup and an infinitesimal subgroup. The étale sub-
groups of order pk of A correspond to those of subgroups of order pk of AC such that the lat-
tice R corresponding to T(A) is contained inside T(p)(A)+V ′

p(A). By duality, the infinites-
imal subgroups of A correspond to the lattices R containing T(A) that are p-isogenous to
T(A)„ i.e. such that [R : T(A)] is a power of p and is contained in T(p)(A)+V ′′

p (A).
All told, the finite subgroups of Ap, or the abelian varieties that are quotients of A,

correspond bijectively to the lattices R containing T(A) such that

R⊗Zp = (R⊗Zp ∩V ′
p)+ (R⊗Zp ∩V ′′

p ). (4.1)

5
In particular, A(p), the quotient of A by the largest infinitesimal subgroup of A that is
annihilated by p (for ordinary A), is defined by the lattice T(A)(p) containing T(A) that is
p-isogenous to T(A), and such that

T(A)(p) ⊗Zp = T ′
p(A)+ 1

p
T ′′

p(A).

6
Let A be an abelian variety over Fq, and F : x 7→ xq its Frobenius endomorphism. Re-
call that A is uniquely determined by the pair (A,F) induced by (A,F) by extension of
scalars from Fq to Fq; the endomorphism F of A factors as the relative Frobenius mor-

phism F (q)
r : A → A

(q)
followed by an isomorphism F ′ : A

(q) → A. If A is ordinary, then we
denote by T(A) the Z-module T(A) endowed with the endomorphism F induced by the
Frobenius endomorphism of A. By §5, the above, and (3.3), the lattices T(A) and F(T(A))
are p-isogenous, and we have that

F(T ′
p(A))= T ′

p(A), (6.1)

F(T ′′
p(A))= qT ′′

p(A). (6.2)

3 of 6



7

Theorem.
The functor A 7→ (T(A),F) is an equivalence of categories between the category of ordi-

nary abelian varieties over Fq and the category of free Z-modules T of finite type endowed
with an endomorphism F that satisfy the following conditions:
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a. F is semi-simple, and its eigenvalues have complex absolute value q
1
2 ,

b. at least half of the roots in Qp of the characteristic polynomial of F are p-adic
units; in other words, if T is of rank d, then the reduction mod p of the polyno-
mial PcT (F; x) is not divisible by x[d/2]+1,

c. there exists an endomorphism V of T such that FV = q.

If condition (a) is satisfied, then conditions (b) and (c) are equivalent to the following:

d. the module T⊗Zp admits a decomposition, stable under F, into two sub-Zp-modules
T ′

p and T ′′
p of equal dimension, and such that F|T ′

p is invertible, and F|T ′′
p is divisible

by q.

Proof. A. We first prove that (a)+(b)+(c) =⇒ (d). If α is a complex eigenvalue of F, then α

is another, of the same multiplicity, and αα= q. If we exclude those that are equal to ±q
1
2 ,

then the eigenvalues of F in C, and thus in Qp, can be grouped into pairs of roots α and
q/α. The roots α and q/α can not simultaneously be p-adic units, and so it follows from
(b) that ±q

1
2 is not an eigenvalue of F, that half of the eigenvalues of F in Qp are p-adic

units, say α1, . . . ,αd/2, and that the other half are of the form β1 = q/α1, . . . ,βd/2 = q/αd/2.
Let T(p) = T ⊗Zp, Vp = T ⊗Qp, V ′

p the subspace of Vp given by the kernel of
∏

i(F −αi),
and V ′′

p the kernel of the endomorphism ϕ = ∏
i(F −βi). We have that Vp = V ′

p ⊕V ′′
p . Let

T ′
p be the projection from T(p) to V ′

p, and let T ′′
p = T(p) ∩V ′′

p . Since ϕ annihilates V ′′
p , and

respects T, it sends T ′
p to T(p) ∩V ′

p ⊂ T ′
p. Also, det(ϕ|V ′

p) = ∏
i, j(αi −β j) is a p-adic unit,

and so ϕ(T ′
p)= T ′

p, and T(p) ∩V ′
p = T ′

p, and so T(p) = T ′
p ⊕T ′′

p.
B. Full faithfulness. Let A and B be abelian varieties over Fq, and let ψ be the arrow

ψ : Hom(A,B)→HomF (T(A),T(B)).

By the theorem of Tate [7] and by (3.1), the arrow

ψℓ : Hom(A,B)⊗Zℓ→HomF (T(A),T(B))⊗Zℓ
is an isomorphism for (ℓ, p)= 1, and so ψ⊗Q is an isomorphism. We know that Hom(A,B)
is torsion free, and so ψ is injective. Let u : A → B be a morphism such that T(u) is
divisible by n. The induced morphism uC : AC→ BC is thus divisible by n, and thus so too
is ũ : Ã → B̃ at the generic point of W . The kernel of multiplication by n is flat over W ; ũ
thus disappears on this kernel, ũ and u are divisible by n, and ψ is bijective.

C. Necessity. The fact that (T(A),F) satisfies (a) follows from Weil; condition (d), which
implies (b) and (c), follows from §6.
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D. Isogenies. Let (T0,F) satisfy (a) and (d), and let T be a lattice in T0⊗Q, stable under

F, that also satisfies (d). Suppose that (T0,F) is the image of an abelian variety A over Fq;
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we will prove that (T,F) comes from an isogenous abelian variety. By T with 1
k T, which is

isomorphic to T, we can suppose that T ⊃ T0. Condition (d) implies that T satisfies (4.1),
and that T defines a subgroup H of A, defined over Fq, and such that (T,F)= T(A/H).

E. Surjectivity. The functor T induces a functor TQ from the category of isogeny classes
of ordinary abelian varieties over Fq to the category of finite-dimensional Q-vector spaces
endowed with an automorphism F that satisfies (a) and (b). By (D), it suffices to prove
that this functor TQ is essentially surjective. It even suffices to show that every simple
object (V ,F) in the codomain is in the image. By Honda [1] (see also [6]), there exists an
abelian variety A over Fq such that the characteristic polynomial of the Frobenius FA of
A is a power of that of F. The third characterisation in §2 of ordinary abelian varieties
shows that A is ordinary. Furthermore, (T(A)⊗Q,F) is the sum of copies of (V ,F), and
thus, by (B), the isogeny class of the abelian variety A⊗Q is the sum of copies of an abelian
variety B that satisfies T(B)⊗Q= (V ,F).

8
Let (T,F) be a pair satisfying the hypotheses of the theorem, 2g the rank of T, A the
corresponding abelian variety over Fq, and AC the induced complex abelian variety (§3).
We have that

T = H1(AC),

and so T ⊗R can be identified with the Lie algebra of AC, and is thus endowed with a
complex structure. Here, thanks to J.-P. Serre, is how to reconstruct this complex structure
in terms of T, F, and the restriction of ϕ to W0(Fp):

Proposition.
The complex structure on T ⊗R defined above is characterised by the following proper-

ties:

i. The endomorphism F is C-linear.
ii. If v is the valuation of the algebraic closure Q of Q in C that extends the valuation

of W0(Fp), then the valuations of the g eigenvalues of this endomorphism are strictly
positive.

Proof. Condition (i) is evident, and condition (ii) follows from the fact that the action of
F on the Lie algebra of A is congruent to zero mod p. The uniqueness of a structure
satisfying (i) and (ii) follows easily from condition (b), satisfied by (T,F).
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We give here a down-to-earth description of the category of ordinary abelian varieties over a finite field \(\mathbb{F}_q\).
The result that we obtain was inspired by Ihara {[}\protect\hyperlink{ref-2}{2}, ch.~V{]} (see also {[}\protect\hyperlink{ref-3}{3}{]}).

\hypertarget{section-1}{%
\section*{1}\label{section-1}}
\addcontentsline{toc}{section}{1}

Let \(p\) be a prime number, \(\mathbb{F}_p\) the field \(\mathbb{Z}/(p)\), and \(\overline{\mathbb{F}}_p\) an algebraic closure of \(\mathbb{F}_p\).
For every power \(q\) of \(p\), let \(\mathbb{F}_q\) be the subfield of \(q\) elements of \(\overline{\mathbb{F}}_p\).
For every algebraic extension \(k\) of \(\mathbb{F}_p\), we denote by \(W_0(k)\) the discrete valuation Henselian ring essentially of finite type over \(\mathbb{Z}\), absolutely unramified, with residue field \(k\);
let \(W(k)\) be the ring of Witt vectors over \(k\), i.e.~the completion of \(W_0(k)\).
Let \(W=W(\overline{F}_p)\), and let \(\varphi\) be an embedding of \(W\) into the field \(\mathbb{C}\) of complex numbers.
We denote by \(\mathbb{Z}(1)\) the subgroup \(2\pi i\mathbb{Z}\) of \(\mathbb{C}\).
The exponential map defines an isomorphism between \(\mathbb{Z}(1)\otimes\mathbb{Z}_\ell\) and \(\mathbb{Z}_\ell(1)(\mathbb{C})=\varprojlim\mu_{\ell^n}(\mathbb{C})\).

We denote by \(A^*\) the dual abelian variety of an abelian variety \(A\).
For every field \(k\), we denote by \(\overline{k}\) the algebraic closure of \(k\).

\hypertarget{section-2}{%
\section*{2}\label{section-2}}
\addcontentsline{toc}{section}{2}

Let \(A\) be an abelian variety of dimension \(g\), defined over a field \(k\) of characteristic \(p\).
Recall that \(A\) is said to be \emph{ordinary} if any of the following equivalent conditions are satisfied:

\begin{enumerate}
\def\labelenumi{\roman{enumi}.}
\tightlist
\item
  \(A\) has \(p^g\) points of order dividing \(p\) with values in \(\overline{k}\).
\item
  The ``Hasse-Witte matrix'' \(F^*\colon H^1(A^{(p)},{\mathscr{O}}_{A^{(p)}}) \to H^1(A,{\mathscr{O}}_A)\) is invertible.
\item
  The neutral component of the group scheme \(A_p\) that is the kernel of multiplication by \(p\) is of multiplicative type (and thus geometrically isomorphic to a power of \(\mu_p\)).
\end{enumerate}

If \(k=\mathbb{F}_q\), and if \(F\) is the Frobenius endomorphism of \(A\), and \(\mathrm{Pc}_A(F;x)\) is its characteristic polynomial, then these conditions are then equivalent to:

\begin{enumerate}
\def\labelenumi{\roman{enumi}.}
\setcounter{enumi}{3}
\tightlist
\item
  At least half of the roots of \(\mathrm{Pc}_A(F;X)\) in \(\overline{\mathbb{Q}}_p\) are \(p\)-adic units. In other words, if \(n=\dim A\), then the reduction \(\mod p\) of the polynomial \(\mathrm{Pc}_A(F;x)\) is not divisible by \(x^{n+1}\).
\end{enumerate}

\hypertarget{section-3}{%
\section*{3}\label{section-3}}
\addcontentsline{toc}{section}{3}

Let \(A\) be an ordinary abelian variety over \(\overline{\mathbb{F}}_p\).
We denote by \(\widetilde{A}\) the canonical Serre--Tate covering {[}\protect\hyperlink{ref-4}{4}{]} of \(A\) over \(W\).
Recall that \(\widetilde{A}\) depends functorially on \(A\), and is characterised by the fact that the \(p\)-divisible group \(T_p(\widetilde{A})\) over \(W\) attached to \(\widetilde{A}\) {[}\protect\hyperlink{ref-5}{5}{]} is the product of the \(p\)-divisible groups (uniquely determined, by \protect\hyperlink{section-2}{§2.iii}) that cover, respectively, the neutral component and the largest étale quotient of \(T_p(A)\).
\oldpage{239}
The canonical covering \(\widetilde{A}\) is again the unique covering of \(A\) such that every endomorphism of \(A\) lifts to \(\widetilde{A}\).
We denote by \(T(A)\) the integer homology of the complex abelian variety \(A_\mathbb{C}\) induced by \(\widetilde{A}\) and \(\varphi\) by the extension of scalars of \(W\) to \(\mathbb{C}\):
\[
  T(A) = H_1(\widetilde{A}\otimes_\varphi\mathbb{C}).
\]
We know that \(\widetilde{A}\) descends uniquely to \(W_0(\overline{F}_p)\), and so \(A_\mathbb{C}\) depends only on \(A\) and on the restriction of \(\varphi\) to \(W_0(\overline{F}_p)\).
The free \(\mathbb{Z}\)-module \(T(A)\) is of rank \(2\dim(A)\);
it is functorial in \(A\).
Furthermore, if \(\ell\neq p\) is a prime number, then we have, functorially, that
\[
  T(A)\otimes\mathbb{Z}_\ell = T_\ell(A).
\tag{3.1}
\]

The canonical covering of the dual abelian variety \(A^*\) of \(A\) is the dual of \(\widetilde{A}\), and so \((A_\mathbb{C})^*=A_\mathbb{C}^*\), and \(T(A)\) and \(T(A^*)\) are in perfect duality with values in \(\mathbb{Z}(1)\):
\[
  T(A)\otimes T(A^*) \to \mathbb{Z}(1)
\tag{3.2}
\]
(it is necessary to use \(\mathbb{Z}(1)\) instead of \(\mathbb{Z}\) in order to obtain a theory that is invariant under complex conjugation).
The pairings (3.2) are compatible, via (3.1), with the pairings
\[
  T_\ell(A)\otimes T_\ell(A^*) \to \mathbb{Z}_\ell(1);
\]
a morphism \(\xi\colon A\to A^*\) defines a polarisation of \(A\) if and only if \(\xi_\mathbb{C}\colon A_\mathbb{C}\to A_\mathbb{C}^*\) defines a polarisation of \(A_\mathbb{C}\).
Set
\[
  \begin{aligned}
    T'_p(A) &= \operatorname{Hom}(\mathbb{Q}_p/\mathbb{Z}_p,A(\overline{F}_p))
  \\T''_p(A) &= \operatorname{Hom}_{\mathbb{Z}_p}(T'_p(A^*),\mathbb{Z}(1)\otimes\mathbb{Z}_p)
  \end{aligned}
\]
These \(\mathbb{Z}_p\)-modules are covariant functors in \(A\).

By definition of the canonical covering, the \(p\)-divisible group \(T_p(\widetilde{A})\) is the sum of the constant proétale group \(T'_p(A)\) and the Cartier dual of \(T'_p(A^*)\).
For every morphism \(u\colon A\to B\), the induced morphism \(u\colon T_p(\widetilde{A})\to T_p(\widetilde{B})\) can be identified with the sum of \(u|T'_p(A)\colon T'_p(A)\to T'_p(B)\) and the Cartier transpose of \(u^t|T'_p(B^*)\colon T'_p(B^*)\to T'_p(A^*)\).
Over \(\mathbb{C}\), we canonically have that \(\mathbb{Z}(1)/(p^n)\sim\mu_{p^n}\), whence an isomorphism of functors:
\[
  T_{(p)}(A) = T(A)\otimes\mathbb{Z}_p = T'_p(A)\oplus T''_p(A).
\tag{3.3}
\]
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Recall that, if \(\varphi\colon X\to Y\) is an isogeny between complex abelian varieties, then the exact homotopy sequence reduces to a short exact sequence:
\[
  0 \to H_1(X) \to H_1(Y) \to \operatorname{Ker}(\varphi) \to 0.
\]
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The abelian varieties that are quotients of \(X\) by a finite subgroup, and these finite subgroups of \(X\), correspond bijectively with the sub-lattice of \(H_1(X)\otimes\mathbb{Q}\) containing \(H_1(X)\).

Let \(A\) be an ordinary abelian variety over \(\overline{\mathbb{F}}_p\).
If \(n\) is an integer coprime to \(p\), then the subschemes of finite groups of order \(n\) of \(A\), of \(\widetilde{A}\), and of \(A_\mathbb{C}\), correspond bijectively, and also correspond to lattices \(R\) containing \(T(A)\) such that \([R:T(A)]=n\).

Set \(V'_p=T'_p(A)\otimes\mathbb{Q}_p\) and \(V''_p(A)=T''_p(A)\otimes\mathbb{Q}_p\).
The subschemes of finite groups of order \(p^k\) of \(A\) are products of a étale subgroup and an infinitesimal subgroup.
The étale subgroups of order \(p^k\) of \(A\) correspond to those of subgroups of order \(p^k\) of \(A_\mathbb{C}\) such that the lattice \(R\) corresponding to \(T(A)\) is contained inside \(T_{(p)}(A)+V'_p(A)\).
By duality, the infinitesimal subgroups of \(A\) correspond to the lattices \(R\) containing \(T(A)\) that are \(p\)-isogenous to \(T(A)\),, i.e.~such that \([R:T(A)]\) is a power of \(p\) and is contained in \(T_{(p)}(A)+V''_p(A)\).

All told, the finite subgroups of \(A^p\), or the abelian varieties that are quotients of \(A\), correspond bijectively to the lattices \(R\) containing \(T(A)\) such that
\[
  R\otimes\mathbb{Z}_p = (R\otimes\mathbb{Z}_p \cap V'_p) + (R\otimes\mathbb{Z}_p \cap V''_p).
\tag{4.1}
\]
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In particular, \(A^{(p)}\), the quotient of \(A\) by the largest infinitesimal subgroup of \(A\) that is annihilated by \(p\) (for ordinary \(A\)), is defined by the lattice \(T(A)^{(p)}\) containing \(T(A)\) that is \(p\)-isogenous to \(T(A)\), and such that
\[
  T(A)^{(p)}\otimes\mathbb{Z}_p = T'_p(A) + \frac1p T''_p(A).
\]
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Let \(A\) be an abelian variety over \(\mathbb{F}_q\), and \(F\colon x\mapsto x^q\) its Frobenius endomorphism.
Recall that \(A\) is uniquely determined by the pair \((\overline{A},F)\) induced by \((A,F)\) by extension of scalars from \(\mathbb{F}_q\) to \(\overline{\mathbb{F}}_q\);
the endomorphism \(F\) of \(\overline{A}\) factors as the relative Frobenius morphism \(F_\mathrm{r}^{(q)}\colon\overline{A}\to\overline{A}^{(q)}\) followed by an isomorphism \(F'\colon\overline{A}^{(q)}\to\overline{A}\).
If \(A\) is ordinary, then we denote by \(T(A)\) the \(\mathbb{Z}\)-module \(T(\overline{A})\) endowed with the endomorphism \(F\) induced by the Frobenius endomorphism of \(A\).
By \protect\hyperlink{section-5}{§5}, the above, and (3.3), the lattices \(T(A)\) and \(F(T(A))\) are \(p\)-isogenous, and we have that
\[
  F(T'_p(A)) = T'_p(A),
\tag{6.1}
\]
\[
  F(T''_p(A)) = qT''_p(A).
\tag{6.2}
\]
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\begin{itenv}{Theorem}

The functor \(A\mapsto(T(A),F)\) is an equivalence of categories between the category of ordinary abelian varieties over \(\mathbb{F}_q\) and the category of free \(\mathbb{Z}\)-modules \(T\) of finite type endowed with an endomorphism \(F\) that satisfy the following conditions:
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\begin{enumerate}
\def\labelenumi{\alph{enumi}.}
\tightlist
\item
  \(F\) is semi-simple, and its eigenvalues have complex absolute value \(q^{\frac12}\),
\item
  at least half of the roots in \(\overline{\mathbb{Q}}_p\) of the characteristic polynomial of \(F\) are \(p\)-adic units; in other words, if \(T\) is of rank \(d\), then the reduction \(\mod p\) of the polynomial \(\mathrm{Pc}_T(F;x)\) is not divisible by \(x^{[d/2]+1}\),
\item
  there exists an endomorphism \(V\) of \(T\) such that \(FV=q\).
\end{enumerate}

If condition (a) is satisfied, then conditions (b) and (c) are equivalent to the following:

\begin{enumerate}
\def\labelenumi{\alph{enumi}.}
\setcounter{enumi}{3}
\tightlist
\item
  the module \(T\otimes\mathbb{Z}_p\) admits a decomposition, stable under \(F\), into two sub-\(\mathbb{Z}_p\)-modules \(T'_p\) and \(T''_p\) of equal dimension, and such that \(F|T'_p\) is invertible, and \(F|T''_p\) is divisible by \(q\).
\end{enumerate}

\end{itenv}

\begin{proof}
A. We first prove that (a)+(b)+(c)\(\implies\)(d).
If \(\alpha\) is a complex eigenvalue of \(F\), then \(\overline{\alpha}\) is another, of the same multiplicity, and \(\alpha\overline{\alpha}=q\).
If we exclude those that are equal to \(\pm q^{\frac12}\), then the eigenvalues of \(F\) in \(\mathbb{C}\), and thus in \(\overline{\mathbb{Q}}_p\), can be grouped into pairs of roots \(\alpha\) and \(q/\alpha\).
The roots \(\alpha\) and \(q/\alpha\) can not simultaneously be \(p\)-adic units, and so it follows from (b) that \(\pm q^{\frac12}\) is not an eigenvalue of \(F\), that half of the eigenvalues of \(F\) in \(\overline{\mathbb{Q}}_p\) are \(p\)-adic units, say \(\alpha_1,\ldots,\alpha_{d/2}\), and that the other half are of the form \(\beta_1=q/\alpha_1,\ldots,\beta_{d/2}=q/\alpha_{d/2}\).
Let \(T_{(p)}=T\otimes\mathbb{Z}_p\), \(V_p=T\otimes\mathbb{Q}_p\), \(V'_p\) the subspace of \(V_p\) given by the kernel of \(\prod_i(F-\alpha_i)\), and \(V''_p\) the kernel of the endomorphism \(\varphi=\prod_i(F-\beta_i)\).
We have that \(V_p=V'_p\oplus V''_p\).
Let \(T'_p\) be the projection from \(T_{(p)}\) to \(V'_p\), and let \(T''_p=T_{(p)}\cap V''_p\).
Since \(\varphi\) annihilates \(V''_p\), and respects \(T\), it sends \(T'_p\) to \(T_{(p)}\cap V'_p\subset T'_p\).
Also, \(\det(\varphi|V'_p)=\prod_{i,j}(\alpha_i-\beta_j)\) is a \(p\)-adic unit, and so \(\varphi(T'_p)=T'_p\), and \(T_{(p)}\cap V'_p=T'_p\), and so \(T_{(p)}=T'_p\oplus T''_p\).

B. \emph{Full faithfulness.}
Let \(A\) and \(B\) be abelian varieties over \(\mathbb{F}_q\), and let \(\psi\) be the arrow
\[
      \psi\colon \operatorname{Hom}(A,B) \to \operatorname{Hom}_F(T(A),T(B)).
    \]
By the theorem of Tate {[}\protect\hyperlink{ref-7}{7}{]} and by (3.1), the arrow
\[
      \psi_\ell\colon \operatorname{Hom}(A,B)\otimes\mathbb{Z}_\ell \to \operatorname{Hom}_F(T(A),T(B))\otimes\mathbb{Z}_\ell
    \]
is an isomorphism for \((\ell,p)=1\), and so \(\psi\otimes\mathbb{Q}\) is an isomorphism.
We know that \(\operatorname{Hom}(A,B)\) is torsion free, and so \(\psi\) is injective.
Let \(u\colon A\to B\) be a morphism such that \(T(u)\) is divisible by \(n\).
The induced morphism \(u_\mathbb{C}\colon\overline{A}_\mathbb{C}\to\overline{B}_\mathbb{C}\) is thus divisible by \(n\), and thus so too is \(\widetilde{u}\colon\widetilde{\overline{A}}\to\widetilde{\overline{B}}\) at the generic point of \(W\).
The kernel of multiplication by \(n\) is flat over \(W\);
\(\widetilde{u}\) thus disappears on this kernel, \(\widetilde{u}\) and \(u\) are divisible by \(n\), and \(\psi\) is bijective.

C. \emph{Necessity.}
The fact that \((T(A),F)\) satisfies (a) follows from Weil; condition (d), which implies (b) and (c), follows from \protect\hyperlink{section-6}{§6}.
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D. \emph{Isogenies.}
Let \((T_0,F)\) satisfy (a) and (d), and let \(T\) be a lattice in \(T_0\otimes\mathbb{Q}\), stable under \(F\), that also satisfies (d).
Suppose that \((T_0,F)\) is the image of an abelian variety \(A\) over \(\mathbb{F}_q\); we will prove that \((T,F)\) comes from an isogenous abelian variety.
By \(T\) with \(\frac1k T\), which is isomorphic to \(T\), we can suppose that \(T\supset T_0\).
Condition (d) implies that \(T\) satisfies (4.1), and that \(T\) defines a subgroup \(H\) of \(\overline{A}\), defined over \(\mathbb{F}_q\), and such that \((T,F)=T(A/H)\).

E. \emph{Surjectivity.}
The functor \(T\) induces a functor \(T_\mathbb{Q}\) from the category of isogeny classes of ordinary abelian varieties over \(\mathbb{F}_q\) to the category of finite-dimensional \(\mathbb{Q}\)-vector spaces endowed with an automorphism \(F\) that satisfies (a) and (b).
By (D), it suffices to prove that this functor \(T_\mathbb{Q}\) is essentially surjective.
It even suffices to show that every simple object \((V,F)\) in the codomain is in the image.
By Honda {[}\protect\hyperlink{ref-1}{1}{]} (see also {[}\protect\hyperlink{ref-6}{6}{]}), there exists an abelian variety \(A\) over \(\mathbb{F}_q\) such that the characteristic polynomial of the Frobenius \(F_A\) of \(A\) is a power of that of \(F\).
The third characterisation in \protect\hyperlink{section-2}{§2} of ordinary abelian varieties shows that \(A\) is ordinary.
Furthermore, \((T(A)\otimes\mathbb{Q},F)\) is the sum of copies of \((V,F)\), and thus, by (B), the isogeny class of the abelian variety \(A\otimes\mathbb{Q}\) is the sum of copies of an abelian variety \(B\) that satisfies \(T(B)\otimes\mathbb{Q}=(V,F)\).
\end{proof}
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Let \((T,F)\) be a pair satisfying the hypotheses of the theorem, \(2g\) the rank of \(T\), \(A\) the corresponding abelian variety over \(\mathbb{F}_q\), and \(A_\mathbb{C}\) the induced complex abelian variety (\protect\hyperlink{section-3}{§3}).
We have that
\[
  T= H_1(A_\mathbb{C}),
\]
and so \(T\otimes\mathbb{R}\) can be identified with the Lie algebra of \(A_\mathbb{C}\), and is thus endowed with a complex structure.
Here, thanks to J.-P. Serre, is how to reconstruct this complex structure in terms of \(T\), \(F\), and the restriction of \(\varphi\) to \(W_0(\mathbb{F}_p)\):

\begin{itenv}{Proposition}

The complex structure on \(T\otimes\mathbb{R}\) defined above is characterised by the following properties:

\begin{enumerate}
\def\labelenumi{\roman{enumi}.}
\tightlist
\item
  The endomorphism \(F\) is \(\mathbb{C}\)-linear.
\item
  If \(v\) is the valuation of the algebraic closure \(\overline{\mathbb{Q}}\) of \(\mathbb{Q}\) in \(\mathbb{C}\) that extends the valuation of \(W_0(\mathbb{F}_p)\), then the valuations of the \(g\) eigenvalues of this endomorphism are strictly positive.
\end{enumerate}

\end{itenv}

\begin{proof}
Condition (i) is evident, and condition (ii) follows from the fact that the action of \(F\) on the Lie algebra of \(A\) is congruent to zero \(\mod p\).
The uniqueness of a structure satisfying (i) and (ii) follows easily from condition (b), satisfied by \((T,F)\).
\end{proof}
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