On modifications and exceptional analytic sets

Hans Grauert

1962

Translator's note
This page is a translation into English of the following:

Grauert, H. "Über Modifikationen und exzeptionelle analytische Mengen." Math. Ann. 146 (1962), 331-368. eudml.org/doc/160940.

The translator (Tim Hosgood) takes full responsibility for any errors introduced, and claims no rights to any of the mathematical content herein.

Version: 94f6dce

The term "modification" first appeared in a 1951 publication [1] by H. Behnke and K. Stein. The authors used it to refer to a process that allows a given complex space to be modified. If X is a complex space, and $N \subset X$ a low-dimensional analytic set, then N is replaced by another set N^{\prime} such that the complex structure on $X \backslash N$ can be extended to the entire space $X^{\prime}=(X \backslash N) \cup N^{\prime}$. The newly obtained complex space X^{\prime} is then called a modification of X.

As already demonstrated in [1], modifications can be very pathological. The interest therefore turned towards special classes of modifications. In [12], H. Hopf considered socalled " σ-processes" on n-dimensional complex manifolds M. These modifications made it possible to replace any point $x \in M$ with a complex projective space \mathbb{P}^{n-1} of dimension $n-1$. The result is a new singularity-free complex manifold M^{\prime}. There are more general modifications that modify the manifold M at only one point $x \in M$, but the space thus obtained can then contain singular points, i.e. is just a complex space.

This present work deals with the following question. Let X be a complex space, and $A \subset X$ a complex-analytic set. Then when does there exist a modification Y of X where A is replaced by a point y, and such that $X \backslash A=Y \backslash y$?

If such a Y exists, then A is said to be an exceptional analytic set in X, and we say that A can be "collapsed" to a point.

In general, such a Y does not exist. If X is a complex space, and $A \subset X$ is a compact connected analytic set, then, from a set-theoretic point of view, A can of course always be replaced by a point y_{0}. Then $Y=(X \backslash A) \cup y_{0}$ has a canonical topological structure, $Y \backslash y_{0}=$ $X \backslash A$ has a complex structure \mathfrak{S}, and the identity $X \backslash A \rightarrow X \backslash y_{0}$ can be extended to a continuous map $\lambda: X \rightarrow Y$. Then λ maps $X \backslash A$ topologically (and even biholomorphically) to Y, and sends A to y_{0}. If A can now be collapsed to a point, then \mathfrak{S} can be extended to the entire space Y, and λ becomes a holomorphic map $X \rightarrow Y$.

We now give an overview of the present work. In $\S 1$ we study the concepts of pseudoconvexity and holomorphic convexity on complex spaces. The reduction theory of Remmert
then leads, in $\S 2$, to the first general theorem concerning exceptional analytic sets $A \subset X$. In order to simplify the somewhat strong assumption in this theorem, we consider, in §3, a coherent analytic sheaf \mathfrak{m} of germs of holomorphic functions that vanish on A, so that A is exactly the zero set of \mathfrak{m}. Using \mathfrak{m}, we then endow A with a normal bundle $N_{\mathfrak{m}}$. The structure of $N_{\mathfrak{m}}$ is then critical: A is exceptional if N is weakly negative. We use the word "negative" here in the sense of Kodaira's definition; our result shows that it can be defined in a purely algebraic way in the world of algebraic geometry. Also in §3, we obtain simple criteria for positive (negative) line bundles and characterising projective algebraic spaces. The well-known theorem of Kodaira (that every Hodge manifold X is projective algebraic) is generalised to the case where X is a normal complex space. Then $\S 4$ deals with the complex structure of neighbourhoods of analytic sets $A \subset X$, which can be collapsed to a point. The main result of this section is that the neighbourhoods of (special) exceptional analytic sets $A \subset X$ and $A^{\prime} \subset X^{\prime}$ are analytically equivalent if they are equivalent in a formal sense. This means that the complex structure can be "calculated," which makes it possible to solve one of Hirzebruch's problems [11], and to transfer the propositions of Enriques and Kodaira from algebraic geometry to complex analysis.

- It should also be mentioned that, using the main results of $\S 4$, we construct a complex space X with the following properties:

1. X is connected, compact, and of dimension 2 ;
2. X is normal, and has only one non-regular points;
3. there exist two analytically and algebraically independent meromorphic functions on X; and
4. X is not an algebraic variety (neither in the projective sense nor the more general sense of Weil). ${ }^{1}$

In contrast, as is well known, Kodaira and Chow [4] have shown that every compact, 2dimensional complex manifold with two independent meromorphic functions is projective algebraic.

1 Complex spaces, pseudoconvexivity

1.1 -

Complex spaces are defined as in [10]. We always assume that they are reduced: their local rings contain no nilpotent elements. If X is a complex space, $U=U(x)$ a neighbourhood, $A \subset G \subset \mathbb{C}^{n}$ an analytic set in a domain G of the space \mathbb{C}^{n} of the n-dimensional complex numbers, and τ a biholomorphic map $U \rightarrow A$, then (U, τ, A) is called a chart in X, and τ a biholomorphic embedding of U in G.

We always denote by $\mathscr{O}=\mathscr{O}(X)$ the sheaf of germs of locally holomorphic functions on X. If $A \subset X$ is an analytic subset, then we denote by $\mathfrak{m}=\mathfrak{m}(A) \subset \mathscr{O}$ the sheaf of germs of locally holomorphic functions that vanish on A. By a theorem of Cartan, \mathfrak{m} is coherent.

[^0]For every subsheaf $\mathscr{I} \subset \mathscr{O}$, let \mathscr{I}^{k} be the sheaf consisting of germs $f_{x}=f_{1 x} \cdot \ldots \cdot f_{k x}$, where $f_{1 x}, \ldots, f_{k x} \in \mathscr{I}_{x}$ for $x \in X, k=1,2, \ldots$

Now 2 let $x \in X, \mathfrak{m}=\mathfrak{m}(x)$, and $d(x)=\operatorname{dim}_{\mathbb{C}} \mathfrak{m}_{x} / \mathfrak{m}_{x}^{2}$. If $\psi: X \rightarrow \mathbb{C}^{n}$ is a holomorphic map, then ψ defines, at each point $x \in X$, a homomorphism $\psi_{x}^{*}: \mathscr{O}_{z}\left(\mathbb{C}^{n}\right) \rightarrow \mathscr{O}_{x}(X)$. This homomorphism maps the maximal ideal $\mathfrak{m}_{z} \subset \mathscr{O}_{z}\left(\mathbb{C}^{n}\right)$ to the maximal ideal $\mathfrak{m}_{x} \subset \mathscr{O}_{x}(X)$. If the induced map $\mathfrak{m}_{z} / \mathfrak{m}_{z}^{2} \rightarrow \mathfrak{m}_{x} / \mathfrak{m}_{x}^{2}$ is surjective, then we say that ψ is a regular map at x. In the case where X is a complex manifold, we see that $\mathfrak{m}_{x} / \mathfrak{m}_{x}^{2}$ is exactly the covariant tangent space of X. Then ψ is regular at $x \in X$ if and only if the Jacobian matrix of ψ at x has rank equal to $\operatorname{dim}_{x} X$.

We say that a map $\psi: X \rightarrow \mathbb{C}^{n}$ is biholomorphic if it is a bijection that is regular at every point $x \in X$.
(1). Let x be a point of a complex space X. Then there exists a neighbourhood $U=U(x)$ and a chart (U, τ, A) with $A \subset G$ and $\operatorname{dim} G=d(x)$. If (U, τ, A) is any such chart, and $\psi: U \rightarrow \mathbb{C}^{n}$ is a regular holomorphic map, then there exists an open neighbourhood $V=V(z)$ of $z=\tau(x)$ in G, and a biholomorphic map $\hat{\psi}: V \rightarrow \mathbb{C}^{n}$ such that $\psi \mid W=\hat{\psi} \circ \tau\left(\right.$ where $\left.W=\tau^{-1}(V)\right) .{ }^{3}$

Of course, $\psi \mid W$ is then also biholomorphic.
Proof. To prove (1), we may assume that X is an analytic set in a domain $D \subset \mathbb{C}^{m}$. Let $\hat{\mathfrak{m}}_{x}$ be the maximal ideal in $\mathscr{O}_{x}\left(\mathbb{C}^{m}\right)$, and $\mathfrak{i}_{x} \subset \mathscr{O}_{x}\left(\mathbb{C}^{m}\right)$ the ideal of germs of holomorphic functions that vanish on $X \subset D$. Let r be the dimension of the image \mathscr{F} of \mathfrak{i}_{x} under the natural homomorphism $\lambda: \mathfrak{i}_{x} \rightarrow \hat{\mathfrak{m}}_{x} / \hat{\mathfrak{m}}_{x}^{2}$. Clearly $m=r+d(x)$. Let f_{1}, \ldots, f_{r} be functions that are holomorphic on a neighbourhood of x, with $f_{v x} \in \mathfrak{i}_{x}$, so that the elements $\lambda\left(f_{v x}\right)$ for $v=1, \ldots, r$ span the complex vector space \mathscr{F}. Then the rank of the Jacobian matrix of $\left(f_{1}, \ldots, f_{r}\right)$ in X is equal to r. Then, in a neighbourhood $W=W(x)$, the following properties apply:

1. The functions f_{1}, \ldots, f_{r} are holomorphic on W, and vanish on $X \cap W$;
2. $\hat{G}=\left\{z \in W \mid f_{v}(z)=0\right.$ for $\left.v=1,2 \ldots, r\right\}$ is a $d(x)$-dimensional analytic subset of W that contains no singularities, and which is mapped to a domain in $\mathbb{C}^{d(x)}$ under some biholomorphic map τ.

Now let $A=\tau(X \cap W)$ and $U^{\prime}=W \cap X$, and we obtain a chart satisfying the required properties.

To prove the second claim of (1), let (U, τ, A) be a chart with $A \subset G$ and $\operatorname{dim} G=d(x)$. We may assume that $U=A$ and that τ is the identity. Then $\lambda\left(\mathfrak{i}_{x}\right)=0$, since $r=0$. If f_{1}, \ldots, f_{n} are holomorphic functions on U that define a holomorphic map $\psi: U \rightarrow \mathbb{C}^{n}$, and if $\hat{f}_{1}, \ldots, \hat{f}_{n}$ are holomorphic continuations in an open neighbourhood of x in G, then the rank of the Jacobian matrix of $\left(\hat{f}_{1}, \ldots, \hat{f}_{n}\right)$ at x is equal to $d(x)=\operatorname{dim} G$. There thus exists a neighbourhood $W=W(x)$ in which the $\hat{f}_{1}, \ldots, \hat{f}_{n}$ are holomorphic and give a biholomorphic $\operatorname{map} \psi: W \rightarrow \mathbb{C}^{n}$.

By the definition of a complex space, for every point $x \in X$ there is a non-empty system of charts (U, τ, A) such that $x \in U$. As we will show in this section, it is thus possible

[^1]to transfer the concept of strictly plurisubharmonic functions to the setting of complex spaces.

Bibliography

[1] H. Behnke, K. Stein. "Modifikationen komplexer mannigfaltigkeiten und riemannscher gebiete." Math. Ann. 124 (1951), 1-16.
[2] H. Cartan. "Quotients of complex spaces," in: Contributions to Function Theory. Tata Inst. Fund. Res. Bombay, 1960: pp. 1-16.
[3] H. Cartan, S. Eilenberg. Homological algebra. Princeton University Press, 1956.
[4] W.L. Chow, K. Kodaira. "On analytic surfaces with two independent meromorphic functions." Proc. Nat. Acad. Sci. U.S.A. 38 (1952), 319-325.
[5] J. Frenkel. "Cohomologie non abélinne et espaces fibés." Bull. Soc. Math. France. 85 (1957), 135-218.
[6] H. Grauert. "On levi's problem and the imbedding of real-analytic manifolds." Ann. Math. 68 (1958), 460-472.
[7] H. Grauert. "On point modifications," in: Contributions to Function Theory. Tata Inst. Fund. Res. Bombay, 1960: pp. 139-142.
[8] H. Grauert. "Ein theorem der analytischen garbentheorie und die modulräume komplexer strukturen." Pub. Math. 5 (1960), 233-292.
[9] H. Grauert, R. Remmert. "Plurisubharmonische funktionen in komplexen räumen." Math. Z. 65 (1956), 175-194.
[10] H. Grauert, R. Remmert. "Komplexe räume." Math. Ann. 136 (1958), 245-318.
[11] F. Hirzebruch. "Some problems on differentiable and complex manifolds." Math. Ann. 60 (1954), 213-236.
[12] H. Hopf. "Schlichte abbildungen und lokale modifikation 4-dimensionaler komplexer mannigfaltigkeiten." Comment. Math. Helv. 29 (1955), 132-156.
[13] K. Kodaira. "On kähler varieties of restricted type." Ann. Math. 60 (1954), 28-48.
[14] B.O. Koopman, A.B. Brown. "On the covering of analytic loci by complexes." Trans. Am. Math. Soc. 34 (1931), 231-251.
[15] S. Nakano. "On complex analytic vector bundles." J. Math. Soc. Japan. 7 (1955), 1-12.
[16] R. Narasimhan. "The levi problem for complex spaces." Math. Ann. 142 (1961), 355-365.
[17] R. Remmert. "Sur les espaces analytiques holomorphiquement séperables et holomorphiquement convexes." C. R. Acad. Sci. (Paris). 243 (1956), 118-121.
[18] R. Remmert, K. Stein. "Über die wesentlichen singularitäten analytischer mengen." Math. Ann. 126 (1953), 263-306.
[19] A. Weil. Introduction à l'étude des variétés kaehleriénnes. Paris: Hermann, 1958.

[^0]: ${ }^{1}$ Some of the results of the present work were discovered in 1959, and published in [7]. There are, however, some errors in [7]: in Theorem 1, it should, of course, read "[...] such that G is strongly pseudoconvex and A is the maximal compact analytic subset of G "; furthermore, the criterion in Theorem 2 is only sufficient (see §3.8); Theorem 3 is only proven in the present work in the case where the normal bundle $N(A)$ is weakly negative. - The author has already presented, several times, previously, the example of the complex space X, and, since then, Hironaka has found more interesting examples of complex spaces of this type.

[^1]: ${ }^{2}$ A subscript x always denotes the stalk of the sheaf at the point x. If s is a section, then s_{x} denotes its value at x. Holomorphic functions and sections in \mathscr{O} are always considered to be the same thing. - If F is a complex-analytic vector bundle, then \underline{F} always denotes the sheaf of germs of locally holomorphic sections in F.
 ${ }^{3}$ This statement and its proof were communicated to me by A. Andreotti.

