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1 Algebraic groups ∣∣∣ p. 9-01
Definition. An algebraic group is a pair (G,ϕ), where G is an algebraic variety and ϕ is a
morphism from G×G to G that endows the set of points of G with the structure of a group.

Properties. For every point a of G, the translations la and ra defined by la(x) = ϕ(a, x)
and ra(x)=ϕ(x,a) are automorphisms of the algebraic variety structure of G.

Every point x of G is simple (indeed, if y is a simple point of G, then there exists an
automorphism of G that sends y to x).

If G is connected, then G is irreducible. The map π : G → G that, to any point, asso-
ciates its inverse under the group law is a morphism (and thus an automorphism) of the
algebraic variety structure. The proof of this property uses the fact that a bijective (and
thus radicial) morphism from one variety to another is birational if it is unramified ([1,
Corollary 2 to Proposition 3, Section II, Chapter VI]).

(There would be no problem with asking for G to be connected as part of the definition
of algebraic groups).

Definition. An abelian variety is an algebraic group whose variety is connected (and thus
irreducible) and complete.

We will show that this implies that the group is commutative.

2 A property of complete varieties
Recall that a variety V is said to be complete if, for every variety T and every closed
subset F ⊂ T ×V , the projection from F to T is closed. In the classical case, this property
is equivalent to compactness.
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2 A property of complete varieties

2.1 Proposition 0

Proposition 0. Let V be a complete connected variety, T a connected variety, and f a
morphism from T ×V to another variety U . Then, if, for some t0 ∈ T, f (t0,v) does not
depend on v, then

f (t,v)=ϕ(t) for all t,v

where ϕ is a morphism from T to U . ∣∣∣ p. 9-02

Proof. If v1,v2 ∈ V , then the set Pv1,v2 of t ∈ T such that f (t,v1) = f (t,v2) is closed in T.
The set P = ⋂

Pv1,v2 of t ∈ T for which f (t,v) does not depend on v is thus also closed. We
will now show that it is also open. If t1 ∈ P, then f (t1,v) = u1 for all v. Let U \ F be an
affine neighbourhood of u1, with F closed, so f −1(F) is closed, G = prT ( f −1(F)) is closed,
and T \G is a neighbourhood of t1. For t′ ∈ T \G, f defines a morphism v 7→ f (t′,v) from
V , which is complete and connected, to U \ F, which is affine. This map is necessarily
constant. Thus P ⊃ T \G is a neighbourhood of each of its points, i.e. an open subset.

Since T is connected, if t0 ∈ P, then P = T, which finishes the proof. (To see that ϕ
is a morphism, it suffices to take a point v0 ∈ V , without worrying about the case where
V =∅).

Remark. There is an analogous statement in analytic geometry: let V be a compact con-
nected complex-analytic space, T a connected topological space, and f a continuous map
from T ×V to another analytic space U , such that f induces, for all t ∈ T, a holomorphic
map f t from {t}×V to U . Then, if f t is constant for t = t0, then it is constant for all t ∈ T. In
other words, a holomorphic map from V to U that is homotopic to a constant map amongst
holomorphic maps is constant. The hypothesis that f t be holomorphic for all t is essential:
there are counter-examples with non-Kähler varieties V .

2.2 Consequences of Proposition 0

Proposition 1. If V is a complete connected variety, T a connected variety, and G an
algebraic group, then every morphism f : T ×V →G is of the form

f (t,v)=ϕ1(t)×ϕ2(v)

where ϕ1 and ϕ2 are morphisms from T and V (respectively) to G.

Proof. Let t0 ∈ T. Consider f (t,v) · f (t0,v)−1; this is a morphism from T ×V to G that, for
t = t0 and arbitrary v, takes the value e (the identity element in G). We thus have

f (t,v) · f (t0,v)−1 =ϕ1(t)
=⇒ f (t,v)=ϕ1(t) · f (t0,v).

which finishes the proof.
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3 Functions with values in an abelian variety

Remark 1. “By an analogous argument we can show,” or “by considering the dual group
of G, we deduce” that f (t,v) can also be written in the form ψ1(v)ψ2(t). ∣∣∣ p. 9-03

Remark 2. If ϕ1(t)ϕ2(v) = ϕ′
1(t)ϕ′

2(v), then ϕ′
1(t) = ϕ1(t) ·a and ϕ′

2(v) = ϕ2(v), where a is
some fixed element of G.

Proposition 2. Let G be a connected group, and V a complete connected variety; suppose
that e ∈V ⊂G. Then V is contained in the centre of G.

Proof. Consider f : G×V →G defined by f (g,v)= v·g·v−1. If g = e, then f does not depend
on v. So f (g,v)=ϕ(g). Setting v = e, we find that ϕ(g)= g, and so vgv−1 = g, which proves
the proposition.

In particular:

Theorem 0. The underlying group of an abelian variety is abelian.
(For another proof of this result, see the Appendix).

3 Functions with values in an abelian variety

Theorem 1. Every function f on a non-singular variety U with values in an abelian
variety A is a morphism.

This theorem results from the combination of two lemmas.

Lemma 1. If f is a function defined on a non-singular variety U with values in an alge-
braic group G, then the set S of points of U where f is not defined is of pure codimension
1.

Proof. Let ϕ be the function from U ×U to G defined by ϕ(u,u′) = f (u) f (u′)−1. Let X be
an affine neighbourhood of e in G, and ϕ0 the function from U ×U to X that only differs
from ϕ in the definition of its domain; there is no worry that ϕ(U) might not be contained
in G \ X , since, if f is defined at u, then ϕ is defined at (u,u), and there it takes the value
e; more precisely, we will show that the following three properties are equivalent:

a. f is defined at u;
b. ϕ is defined at (u,u);
c. ϕ0 is defined at (u,u).

Firstly, (a)=⇒ (b)⇐⇒ (c) is evident.
We now show that (b)=⇒ (a). If ϕ is defined at (u,u), let v ∈U be such that f is defined

at v, and such that ϕ is defined at (u,v); then, for all u′ where f is defined,

f (u′)= f (u′) · f (v)−1 · f (v)=ϕ(u′,v) · f (v).
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4 Functions defined on a product with values in an abelian variety

The function f0 defined by f0(u′) =ϕ(u′,v) · f (v) agrees with f , and is defined at the point
u, and so (b)=⇒ (a).

∣∣∣ p. 9-04
This shows that the intersection of with the diagonal of the set H of points of U ×U

where ϕ0 is not defined is S, or rather the image of S under the diagonal map. But the
sets of points at which a numerical function on a normal variety is not defined is of pure
codimension 1; this is thus also true if we replace “numerical function” with “function with
values in an affine variety.” So H is of pure codimension 1. Since U×U is not singular, the
codimension in U ×U of H∩∆ is É codimH+codim∆= dimU +1, which shows that every
component of H∩∆ is of codimension É 1 in ∆.

Remark. The hypothesis that U be non-singular is essential, both for Lemma 1 and for
Theorem 1.

Counter-example. Let U be a cone in K3 that has a cubic G of genus 1 in the 2-
dimensional projective space as its base. Then G can be endowed with a group structure.
The projection f from U to G is defined at every point except for the origin; S is thus of
codimension 2.

Lemma 2. If f is a function defined on a normal variety U with values in a complete
variety V , then the set S of points of U where f is not defined is of codimension > 1.

Proof. Since V is complete, there exists a variety W contained in Dr (where D denotes
the projective line), a morphism p from W to V , and a function s from V to W such that
p ◦ s = IV . Then f = p ◦ (s ◦ f ) will be defined whenever s ◦ f is defined. But s ◦ f can
be considered as taking values in Dr, since W is closed in Dr, and will thus be defined
whenever the r coordinate functions of f are defined. These functions take values in D,
and so, since U is normal, the set of points where they are not defined is of codimension
> 1 [1, Corollary to Proposition 2, Section 1, Chapter V].

4 Functions defined on a product with values in an
abelian variety

Theorem 2. Let X and Y be irreducible varieties, and f a function defined on X ×Y with
values in an abelian variety A (whose group law is written additively). Then f is of the
form f (x, y)= f1(x)+ f2(y), where f1 and f2 are functions from X and Y (respectively) to A.

Remark. This implies that f is defined at the points where f1 and f2 are both defined,
and at these points only. ∣∣∣ p. 9-05

Proof. Let (x0, y0) be a simple point of X ×Y . By considering the function g on X ×Y ,
defined by

g(x, y)= f (x, y)− f (x0, y)− f (x, y0)+ f (x0, y0),

we can reduce to showing that, if a function g with values in A is zero on

X ∨Y = {x0}×Y ∪ X × {y0},
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4 Functions defined on a product with values in an abelian variety

then it is zero on X ×Y .
We will successively reduce to the following particular cases:

a. X is a curve;
b. X is a complete non-singular curve, and Y is non-singular.

Reduction to (a). The set of points x1 of X such that there exists an irreducible curve
containing x0 and x1, where x0 is a simple point, is dense in X . But (a) implies that g is
zero at every point (x1, y) of the open set on which it is defined, and thus at every point of
a dense set, and thus everywhere.

Reduction to (b). If X is an irreducible curve, then there exists a curve X1 that is both
complete and normal (and thus non-singular), as well as a rational equivalence from X to
X1, defined at x0. Also, if Y1 is the open subset of simple points of Y , then Y1 is birationally
equivalent to Y . The function g, defined on X×Y , has a corresponding function g1, defined
on X1 ×Y1, and it clearly suffices to prove the theorem for the function g1.

Proof in case (b). The variety X×Y is a product of two non-singular varieties, and thus
itself non-singular, and so g is a morphism, by Theorem 1. Its value does not depend on
x for y = y0, and thus also for all y, by Proposition 0, since X is complete. It is zero for
x = x0, and thus for all x.

This concludes the proof of the theorem.

Corollary 1. Every function f defined on an algebraic group G with values in an abelian
variety A is of the form h+a, where h is a homomorphism from G to A, and a is a constant.

Proof. Set h(x)= f (x)− f (e). Then the function g : G×G → A defined by g(x, y)= h(x · y) is
of the form g1(x)+g2(y). We can impose that g1(e)= 0, and then g2(e)= 0. By successively
taking x = e and then y= e, we find that g1 = g2 = h. Whence h(x, y)= h(x)+h(y).

Corollary 2. Every function f defined on a line D with values in an abelian variety A is
constant. ∣∣∣ p. 9-06

Proof. By Theorem 1, f is everywhere defined, and by Corollary 1 applied to the mul-
tiplicative group, we have that f (xy) = f (x)+ f (y)+ a. Setting x = 0, we have f (0) =
f (0)+ f (y)+a, whence f (y)=−a.

Appendix: adjoint representations
We can also obtain Theorem 0 from the following proposition:

Proposition 3. Let G be a connected algebraic group, and let C be the centre of G. Then
there exists a linear group L = GL(m) along with an algebraic homomorphism f : G → L
such that f −1(e)= C.
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4 Functions defined on a product with values in an abelian variety

Proof. Let a be the local ring of functions on G defined at the identity element e, and let
J be its maximal ideal; set Tn = J /J n. For all n, Tn is a finite-dimensional vector
space. Every element x ∈ G defines an inner automorphism α(x) : G → G that induces an
automorphism Adn(x) : Tn → Tn. Let Cn be the kernel of Adn : G → GL(Tn). The Cn form
a decreasing sequence of subvarieties of G. Such a sequence is stationary, and so there
exists some n0 such that Cn = Cn0 for all n Ê n0. We now show that Cn0 = C: if x ∈ Cn0 ,
then Adn(x) is the identity for all n, and so the automorphism of a defined by the inner
automorphism α(x) of G is the identity, since the local ring a is separated. Consequently,
since G is connected (and thus irreducible), α(x) is the identity. Whence the proposition,
taking L =GL(Tn0 ).

Remark. In characteristic p ̸= 0, the monomorphism G/C → L is not necessarily an iso-
morphism from G/C to its image. For example, consider G = k∗×k endowed with the group
law ϕ((a,b), (a′,b))= (aa′,b+apb′).

We deduce Proposition 2 and Theorem 0 from Proposition 3 by noting that L is an
affine variety, and that, if V is complete and connected, then every morphism from V to L
is constant.
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\begin{rmenv}{Definition}
An \emph{algebraic group} is a pair \((G,\varphi)\), where \(G\) is an algebraic variety and \(\varphi\) is a morphism from \(G\times G\) to \(G\) that endows the set of points of \(G\) with the structure of a group.

\end{rmenv}

\begin{rmenv}{Properties}
For every point \(a\) of \(G\), the translations \(l_a\) and \(r_a\) defined by \(l_a(x)=\varphi(a,x)\) and \(r_a(x)=\varphi(x,a)\) are automorphisms of the algebraic variety structure of \(G\).

Every point \(x\) of \(G\) is simple (indeed, if \(y\) is a simple point of \(G\), then there exists an automorphism of \(G\) that sends \(y\) to \(x\)).

If \(G\) is connected, then \(G\) is irreducible.
The map \(\pi\colon G\to G\) that, to any point, associates its inverse under the group law is a morphism (and thus an automorphism) of the algebraic variety structure.
The proof of this property uses the fact that a bijective (and thus radicial) morphism from one variety to another is birational if it is unramified ({[}\protect\hyperlink{ref-1}{1}, Corollary 2 to Proposition 3, Section II, Chapter VI{]}).

(There would be no problem with asking for \(G\) to be connected as part of the definition of algebraic groups).

\end{rmenv}

\begin{rmenv}{Definition}
An \emph{abelian variety} is an algebraic group whose variety is connected (and thus irreducible) and complete.

\end{rmenv}

We will show that this implies that the group is commutative.

\hypertarget{section-2}{%
\section{A property of complete varieties}\label{section-2}}

Recall that a variety \(V\) is said to be complete if, for every variety \(T\) and every closed subset \(F\subset T\times V\), the projection from \(F\) to \(T\) is closed.
In the classical case, this property is equivalent to compactness.

\hypertarget{section-2.A}{%
\subsection{Proposition 0}\label{section-2.A}}

\leavevmode\hypertarget{proposition-0}{}%
\begin{itenv}{Proposition 0}
Let \(V\) be a complete connected variety, \(T\) a connected variety, and \(f\) a morphism from \(T\times V\) to another variety \(U\).
Then, if, for some \(t_0\in T\), \(f(t_0,v)\) does not depend on \(v\), then
\[
  f(t,v)=\varphi(t)
  \quad\text{for all }t,v
\]
where \(\varphi\) is a morphism from \(T\) to \(U\).

\end{itenv}

\oldpage{9-02}

\begin{proof}
If \(v_1,v_2\in V\), then the set \(P_{v_1,v_2}\) of \(t\in T\) such that \(f(t,v_1)=f(t,v_2)\) is closed in \(T\).
The set \(P=\bigcap P_{v_1,v_2}\) of \(t\in T\) for which \(f(t,v)\) does not depend on \(v\) is thus also closed.
We will now show that it is also open.
If \(t_1\in P\), then \(f(t_1,v)=u_1\) for all \(v\).
Let \(U\setminus F\) be an affine neighbourhood of \(u_1\), with \(F\) closed, so \(f^{-1}(F)\) is closed, \(G=\operatorname{pr}_T(f^{-1}(F))\) is closed, and \(T\setminus G\) is a neighbourhood of \(t_1\).
For \(t'\in T\setminus G\), \(f\) defines a morphism \(v\mapsto f(t',v)\) from \(V\), which is complete and connected, to \(U\setminus F\), which is affine.
This map is necessarily constant.
Thus \(P\supset T\setminus G\) is a neighbourhood of each of its points, i.e.~an open subset.

Since \(T\) is connected, if \(t_0\in P\), then \(P=T\), which finishes the proof.
(To see that \(\varphi\) is a morphism, it suffices to take a point \(v_0\in V\), without worrying about the case where \(V=\varnothing\)).
\end{proof}

\begin{rmenv}{Remark}
There is an analogous statement in analytic geometry:
let \(V\) be a compact connected complex-analytic space, \(T\) a connected topological space, and \(f\) a continuous map from \(T\times V\) to another analytic space \(U\), such that \(f\) induces, for all \(t\in T\), a holomorphic map \(f_t\) from \(\{t\}\times V\) to \(U\).
Then, if \(f_t\) is constant for \(t=t_0\), then it is constant for all \(t\in T\).
In other words, a holomorphic map from \(V\) to \(U\) that is homotopic to a constant map amongst holomorphic maps is constant.
The hypothesis that \(f_t\) be holomorphic for all \(t\) is essential: there are counter-examples with non-Kähler varieties \(V\).

\end{rmenv}

\hypertarget{section-2.B}{%
\subsection{Consequences of Proposition 0}\label{section-2.B}}

\leavevmode\hypertarget{proposition-1}{}%
\begin{itenv}{Proposition 1}
If \(V\) is a complete connected variety, \(T\) a connected variety, and \(G\) an algebraic group, then every morphism \(f\colon T\times V\to G\) is of the form
\[
  f(t,v) = \varphi_1(t)\times\varphi_2(v)
\]
where \(\varphi_1\) and \(\varphi_2\) are morphisms from \(T\) and \(V\) (respectively) to \(G\).

\end{itenv}

\begin{proof}
Let \(t_0\in T\).
Consider \(f(t,v)\cdot f(t_0,v)^{-1}\);
this is a morphism from \(T\times V\) to \(G\) that, for \(t=t_0\) and arbitrary \(v\), takes the value \(e\) (the identity element in \(G\)).
We thus have
\[
  \begin{aligned}
    f(t,v)\cdot f(t_0,v)^{-1} &= \varphi_1(t)
  \\\implies f(t,v) &= \varphi_1(t)\cdot f(t_0,v).
  \end{aligned}
\]
which finishes the proof.
\end{proof}

\leavevmode\hypertarget{remark-1}{}%
\begin{rmenv}{Remark 1}
``By an analogous argument we can show,'' or ``by considering the dual group of \(G\), we deduce'' that \(f(t,v)\) can also be written in the form \(\psi_1(v)\psi_2(t)\).

\end{rmenv}

\oldpage{9-03}

\leavevmode\hypertarget{remark-2}{}%
\begin{rmenv}{Remark 2}
If \(\varphi_1(t)\varphi_2(v)=\varphi'_1(t)\varphi'_2(v)\), then \(\varphi'_1(t)=\varphi_1(t)\cdot a\) and \(\varphi'_2(v)=\varphi_2(v)\), where \(a\) is some fixed element of \(G\).

\end{rmenv}

\leavevmode\hypertarget{proposition-2}{}%
\begin{itenv}{Proposition 2}
Let \(G\) be a connected group, and \(V\) a complete connected variety;
suppose that \(e\in V\subset G\).
Then \(V\) is contained in the centre of \(G\).

\end{itenv}

\begin{proof}
Consider \(f\colon G\times V\to G\) defined by \(f(g,v)=v\cdot g\cdot v^{-1}\).
If \(g=e\), then \(f\) does not depend on \(v\).
So \(f(g,v)=\varphi(g)\).
Setting \(v=e\), we find that \(\varphi(g)=g\), and so \(vgv^{-1}=g\), which proves the proposition.
\end{proof}

In particular:

\leavevmode\hypertarget{theorem-0}{}%
\begin{itenv}{Theorem 0}
The underlying group of an abelian variety is abelian.

\end{itenv}

(For another proof of this result, see the \protect\hyperlink{appendix}{Appendix}).

\hypertarget{section-3}{%
\section{Functions with values in an abelian variety}\label{section-3}}

\leavevmode\hypertarget{theorem-1}{}%
\begin{itenv}{Theorem 1}
Every function \(f\) on a non-singular variety \(U\) with values in an abelian variety \(A\) is a morphism.

\end{itenv}

This theorem results from the combination of two lemmas.

\leavevmode\hypertarget{lemma-1}{}%
\begin{itenv}{Lemma 1}
If \(f\) is a function defined on a non-singular variety \(U\) with values in an algebraic group \(G\), then the set \(S\) of points of \(U\) where \(f\) is not defined is of pure codimension \(1\).

\end{itenv}

\begin{proof}
Let \(\varphi\) be the function from \(U\times U\) to \(G\) defined by \(\varphi(u,u')=f(u)f(u')^{-1}\).
Let \(X\) be an affine neighbourhood of \(e\) in \(G\), and \(\varphi_0\) the function from \(U\times U\) to \(X\) that only differs from \(\varphi\) in the definition of its domain;
there is no worry that \(\varphi(U)\) might not be contained in \(G\setminus X\), since, if \(f\) is defined at \(u\), then \(\varphi\) is defined at \((u,u)\), and there it takes the value \(e\);
more precisely, we will show that the following three properties are equivalent:

\begin{enumerate}
\def\labelenumi{\alph{enumi}.}
\tightlist
\item
  \(f\) is defined at \(u\);
\item
  \(\varphi\) is defined at \((u,u)\);
\item
  \(\varphi_0\) is defined at \((u,u)\).
\end{enumerate}

Firstly, (a)\(\implies\)(b)\(\iff\)(c) is evident.

We now show that (b)\(\implies\)(a).
If \(\varphi\) is defined at \((u,u)\), let \(v\in U\) be such that \(f\) is defined at \(v\), and such that \(\varphi\) is defined at \((u,v)\);
then, for all \(u'\) where \(f\) is defined,
\[
  f(u') = f(u')\cdot f(v)^{-1}\cdot f(v) = \varphi(u',v)\cdot f(v).
\]
The function \(f_0\) defined by \(f_0(u')=\varphi(u',v)\cdot f(v)\) agrees with \(f\), and is defined at the point \(u\), and so (b)\(\implies\)(a).
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This shows that the intersection of with the diagonal of the set \(H\) of points of \(U\times U\) where \(\varphi_0\) is not defined is \(S\), or rather the image of \(S\) under the diagonal map.
But the sets of points at which a numerical function on a normal variety is not defined is of pure codimension \(1\);
this is thus also true if we replace ``numerical function'' with ``function with values in an affine variety.''
So \(H\) is of pure codimension \(1\).
Since \(U\times U\) is not singular, the codimension in \(U\times U\) of \(H\cap\Delta\) is \(\leqslant\operatorname{codim}H+\operatorname{codim}\Delta = \dim U+1\), which shows that every component of \(H\cap\Delta\) is of codimension \(\leqslant 1\) in \(\Delta\).
\end{proof}

\begin{rmenv}{Remark}
The hypothesis that \(U\) be non-singular is essential, both for \protect\hyperlink{lemma-1}{Lemma 1} and for \protect\hyperlink{theorem-1}{Theorem 1}.

\end{rmenv}

\begin{rmenv}{Counter-example}
Let \(U\) be a cone in \(K^3\) that has a cubic \(G\) of genus \(1\) in the \(2\)-dimensional projective space as its base.
Then \(G\) can be endowed with a group structure.
The projection \(f\) from \(U\) to \(G\) is defined at every point except for the origin;
\(S\) is thus of codimension \(2\).

\end{rmenv}

\leavevmode\hypertarget{lemma-2}{}%
\begin{itenv}{Lemma 2}
If \(f\) is a function defined on a normal variety \(U\) with values in a complete variety \(V\), then the set \(S\) of points of \(U\) where \(f\) is not defined is of codimension \(>1\).

\end{itenv}

\begin{proof}
Since \(V\) is complete, there exists a variety \(W\) contained in \(D^r\) (where \(D\) denotes the projective line), a morphism \(p\) from \(W\) to \(V\), and a function \(s\) from \(V\) to \(W\) such that \(p\circ s=I_V\).
Then \(f=p\circ(s\circ f)\) will be defined whenever \(s\circ f\) is defined.
But \(s\circ f\) can be considered as taking values in \(D^r\), since \(W\) is closed in \(D^r\), and will thus be defined whenever the \(r\) coordinate functions of \(f\) are defined.
These functions take values in \(D\), and so, since \(U\) is normal, the set of points where they are not defined is of codimension \(>1\) {[}\protect\hyperlink{ref-1}{1}, Corollary to Proposition 2, Section 1, Chapter V{]}.
\end{proof}

\hypertarget{section-4}{%
\section{Functions defined on a product with values in an abelian variety}\label{section-4}}

\leavevmode\hypertarget{theorem-2}{}%
\begin{itenv}{Theorem 2}
Let \(X\) and \(Y\) be irreducible varieties, and \(f\) a function defined on \(X\times Y\) with values in an abelian variety \(A\) (whose group law is written additively).
Then \(f\) is of the form \(f(x,y)=f_1(x)+f_2(y)\), where \(f_1\) and \(f_2\) are functions from \(X\) and \(Y\) (respectively) to \(A\).

\end{itenv}

\begin{rmenv}{Remark}
This implies that \(f\) is defined at the points where \(f_1\) and \(f_2\) are both defined, and at these points only.

\end{rmenv}
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\begin{proof}
Let \((x_0,y_0)\) be a simple point of \(X\times Y\).
By considering the function \(g\) on \(X\times Y\), defined by
\[
  g(x,y) = f(x,y) - f(x_0,y) - f(x,y_0) + f(x_0,y_0),
\]
we can reduce to showing that, if a function \(g\) with values in \(A\) is zero on
\[
  X\vee Y = \{x_0\}\times Y \cup X\times\{y_0\},
\]
then it is zero on \(X\times Y\).

We will successively reduce to the following particular cases:

\begin{enumerate}
\def\labelenumi{\alph{enumi}.}
\tightlist
\item
  \(X\) is a curve;
\item
  \(X\) is a complete non-singular curve, and \(Y\) is non-singular.
\end{enumerate}

\emph{Reduction to (a).}
The set of points \(x_1\) of \(X\) such that there exists an irreducible curve containing \(x_0\) and \(x_1\), where \(x_0\) is a simple point, is dense in \(X\).
But (a) implies that \(g\) is zero at every point \((x_1,y)\) of the open set on which it is defined, and thus at every point of a dense set, and thus everywhere.

\emph{Reduction to (b).}
If \(X\) is an irreducible curve, then there exists a curve \(X_1\) that is both complete and normal (and thus non-singular), as well as a rational equivalence from \(X\) to \(X_1\), defined at \(x_0\).
Also, if \(Y_1\) is the open subset of simple points of \(Y\), then \(Y_1\) is birationally equivalent to \(Y\).
The function \(g\), defined on \(X\times Y\), has a corresponding function \(g_1\), defined on \(X_1\times Y_1\), and it clearly suffices to prove the theorem for the function \(g_1\).

\emph{Proof in case (b).}
The variety \(X\times Y\) is a product of two non-singular varieties, and thus itself non-singular, and so \(g\) is a morphism, by \protect\hyperlink{theorem-1}{Theorem 1}.
Its value does not depend on \(x\) for \(y=y_0\), and thus also for all \(y\), by \protect\hyperlink{proposition-0}{Proposition 0}, since \(X\) is complete.
It is zero for \(x=x_0\), and thus for all \(x\).

This concludes the proof of the theorem.
\end{proof}

\leavevmode\hypertarget{corollary-1}{}%
\begin{itenv}{Corollary 1}
Every function \(f\) defined on an algebraic group \(G\) with values in an abelian variety \(A\) is of the form \(h+a\), where \(h\) is a homomorphism from \(G\) to \(A\), and \(a\) is a constant.

\end{itenv}

\begin{proof}
Set \(h(x)=f(x)-f(e)\).
Then the function \(g\colon G\times G\to A\) defined by \(g(x,y)=h(x\cdot y)\) is of the form \(g_1(x)+g_2(y)\).
We can impose that \(g_1(e)=0\), and then \(g_2(e)=0\).
By successively taking \(x=e\) and then \(y=e\), we find that \(g_1=g_2=h\).
Whence \(h(x,y)=h(x)+h(y)\).
\end{proof}

\leavevmode\hypertarget{corollary-2}{}%
\begin{itenv}{Corollary 2}
Every function \(f\) defined on a line \(D\) with values in an abelian variety \(A\) is constant.

\end{itenv}
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\begin{proof}
By \protect\hyperlink{theorem-1}{Theorem 1}, \(f\) is everywhere defined, and by \protect\hyperlink{corollary-1}{Corollary 1} applied to the multiplicative group, we have that \(f(xy)=f(x)+f(y)+a\).
Setting \(x=0\), we have \(f(0)=f(0)+f(y)+a\), whence \(f(y)=-a\).
\end{proof}

\hypertarget{appendix}{%
\section*{Appendix: adjoint representations}\label{appendix}}
\addcontentsline{toc}{section}{Appendix: adjoint representations}

We can also obtain \protect\hyperlink{theorem-0}{Theorem 0} from the following proposition:

\leavevmode\hypertarget{proposition-3}{}%
\begin{itenv}{Proposition 3}
Let \(G\) be a connected algebraic group, and let \(C\) be the centre of \(G\).
Then there exists a linear group \(L=\mathrm{GL}(m)\) along with an algebraic homomorphism \(f\colon G\to L\) such that \(f^{-1}(e)=C\).

\end{itenv}

\begin{proof}
Let \({\mathfrak{a}}\) be the local ring of functions on \(G\) defined at the identity element \(e\), and let \({\mathscr{J}}\) be its maximal ideal;
set \(T_n={\mathscr{J}}/{\mathscr{J}}^n\).
For all \(n\), \(T_n\) is a finite-dimensional vector space.
Every element \(x\in G\) defines an inner automorphism \(\alpha(x)\colon G\to G\) that induces an automorphism \(\operatorname{Ad}_n(x)\colon T_n\to T_n\).
Let \(C_n\) be the kernel of \(\operatorname{Ad}_n\colon G\to\mathrm{GL}(T_n)\).
The \(C_n\) form a decreasing sequence of subvarieties of \(G\).
Such a sequence is stationary, and so there exists some \(n_0\) such that \(C_n=C_{n_0}\) for all \(n\geqslant n_0\).
We now show that \(C_{n_0}=C\):
if \(x\in C_{n_0}\), then \(\operatorname{Ad}_n(x)\) is the identity for all \(n\), and so the automorphism of \({\mathfrak{a}}\) defined by the inner automorphism \(\alpha(x)\) of \(G\) is the identity, since the local ring \({\mathfrak{a}}\) is separated.
Consequently, since \(G\) is connected (and thus irreducible), \(\alpha(x)\) is the identity.
Whence the proposition, taking \(L=\mathrm{GL}(T_{n_0})\).
\end{proof}

\begin{rmenv}{Remark}
In characteristic \(p\neq0\), the monomorphism \(G/C\to L\) is not necessarily an isomorphism from \(G/C\) to its image.
For example, consider \(G=k^*\times k\) endowed with the group law \(\varphi((a,b),(a',b))=(aa',b+a^pb')\).

\end{rmenv}

We deduce \protect\hyperlink{proposition-2}{Proposition 2} and \protect\hyperlink{theorem-0}{Theorem 0} from \protect\hyperlink{proposition-3}{Proposition 3} by noting that \(L\) is an affine variety, and that, if \(V\) is complete and connected, then every morphism from \(V\) to \(L\) is constant.
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